997 resultados para Solar eclipses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O projecto Efistec, iniciado na 4ª edição do curso de Empreendedorismo da Escola de Gestão do Porto (EGP), promovido pela Universidade do Porto em 2008, deu início a um percurso ambicioso, agora mais perto de estar concretizado. Com este projecto pretende-se implementar em edifícios de habitação, serviços e indústria (edificação em geral) uma nova tecnologia modular de concentração solar que permite a cogeração, com energia eléctrica com elevada eficiência e o aquecimento de águas sanitárias usando a mesma área de captação. A solução proposta naquele projecto pretende trazer para os edifícios uma tecnologia altamente eficiente e com um duplo aproveitamento da radiação solar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste artigo pretendemos abordar a relação entre museologia e proteção do meio ambiente tendo em conta que há necessidade premente de por todos os meios disponíveis salvaguardarmos a continuidade da vida de todos os Seres que habitam este Planeta. Com essa finalidade apresentamos algumas soluções técnicas relativamente à utilização da energia solar com utilização na produção de eletricidade passível de ser aplicada nos edifícios destinados a Museus ou Centros Culturais. Propõe-se e desenvolve-se a energia solar fotovoltaica como solução de elevado nível de eficiência para produção de energia elétrica uma vez que é de fácil integração em praticamente todos os revestimentos e/ou estruturas de edifícios quer existentes quer a construir de raiz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a simplified atmospheric general circulation model (AGCM) to investigate the response of the lower atmosphere to thermal perturbations in the lower stratosphere. The results show that generic heating of the lower stratosphere tends to weaken the sub-tropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low latitude heating displacing them poleward, and uniform heating displacing them equatorward. The patterns of response to the low latitude heating are similar to those found to be associated with solar variability in previous observational data analysis, and to the effects of varying solar UV radiation in sophisticated AGCMs. In order to investigate the chain of causality involved in converting the stratospheric thermal forcing to a tropospheric climate signal we conduct an experiment which uses an ensemble of model spin-ups to analyse the time development of the response to an applied stratospheric perturbation. We find that the initial effect of the change in static stability at the tropopause is to reduce the eddy momentum flux convergence in this region. This is followed by a vertical transfer of the momentum forcing anomaly by an anomalous mean circulation to the surface, where it is partly balanced by surface stress anomalies. The unbalanced part drives the evolution of the vertically integrated zonal flow. We conclude that solar heating of the stratosphere may produce changes in the circulation of the troposphere even without any direct forcing below the tropopause. We suggest that the impact of the stratospheric changes on wave propagation is key to the mechanisms involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric Sounding Unit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m−2, which is only 78% of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m−2 owing to strong compensation between negative shortwave and positive longwave forcings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides some insights on the quasi-biennial oscillation (QBO) modulated 11-year solar cycle (11-yr SC) signals in Northern Hemisphere (NH) winter temperature and zonal wind. Daily ERA-40 Reanalysis and ECMWF Operational data for the period of 1958-2006 were used to examine the seasonal evolution of the QBO-solar cycle relationship at various pressure levels up to the stratopause. The results show that the solar signals in the NH winter extratropics are indeed QBO-phase dependent, moving poleward and downward as winter progresses with a faster descent rate under westerly QBO than under easterly QBO. In the stratosphere, the signals are highly significant in late January to early March and have a life span of 30-50 days. Under westerly QBO, the stratospheric solar signals clearly lead and connect to those in the troposphere in late March and early April where they have a life span of 10 days. As the structure changes considerably from the upper stratosphere to the lower troposphere, the exact month when the maximum solar signals occur depends largely on the altitude chosen. For the low-latitude stratosphere, our analysis supports a vertical double-peaked structure of positive signature of the 11-yr SC in temperature, and demonstrates that this structure is further modulated by the QBO. These solar signals have a longer life span (3-4 months) in comparison to those in the extratropics. The solar signals in the lower stratosphere are stronger in early winter but weaker in late winter, while the reverse holds in the upper stratosphere.