984 resultados para Soil water potential
Resumo:
We present a first combined environmental magnetic and geochemical investigation of a loess-paleosol sequence (<55 ka) from the Chuanxi Plateau on the eastern margin of the Tibetan Plateau. Detailed comparison between the Ganzi section and the Luochuan section from the Chinese Loess Plateau (CLP) allows quantification of the effects of provenance and climate on pedogenic magnetic enhancement in Chinese loess. Rare earth element patterns and clay mineral compositions indicate that the Ganzi loess originates from the interior of the Tibetan Plateau. The different Ganzi and CLP loess provenances add complexity to interpretation of magnetic parameters in terms of the concentration and grain size of eolian magnetic minerals. Enhanced paleosol magnetism via pedogenic formation of ferrimagnetic nanoparticles is observed in both sections, but weaker ferrimagnetic contributions, finer superparamagnetic (SP) particles and stronger chemical weathering are found in the Ganzi loess, which indicates the action of multiple pedogenic processes that are dominated by the combined effects of mean annual precipitation (MAP), potential evapotranspiration (PET), organic matter and aluminium content. Under relatively high MAP and low PET conditions, high soil moisture favours transformation of ferrimagnetic minerals to hematite, which results in a relatively higher concentration of hematite but weaker ferrimagnetism of Ganzi loess. Initial growth of superparamagnetic (SP) particles is also documented in the incipient loess at Ganzi, which directly reflects the dynamic formation of nano-sized pedogenic ferrimagnets. A humid pedogenic environment with more organic matter and higher Al content also helps to form finer SP particles. We therefore propose that soil water balance, rather than solely rainfall, dominates the type, concentration and grain size of secondary ferrimagnetic minerals produced by pedogenesis.
Resumo:
This data set contains four time series of particulate and dissolved soil nitrogen measurements from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Total nitrogen from solid phase: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. In 2002 five samples per plot were taken and analyzed independently. Averaged values per depth layer are reported. In later years, three samples per plot were taken, pooled in the field, and measured as a combined sample. Sampling locations were less than 30 cm apart from sampling locations in other years. All soil samples were passed through a sieve with a mesh size of 2 mm in 2002. In later years samples were further sieved to 1 mm. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). 2. Total nitrogen from solid phase (high intensity sampling): In block 2 of the Jena Experiment, soil samples were taken to a depth of 1m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling but were always analyzed independently and never pooled. 3. Mineral nitrogen from KCl extractions: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m (and between 2002 and 2004 also at a depth of 0.15 to 0.3 m) of the mineral soil from each of the experimental plots at various times over the years. In addition also plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled in some later years. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, 2003-2005: Skalar, Breda, Netherlands; 2006-2007: AutoAnalyzer, Seal, Burgess Hill, United Kingdom). 4. Dissolved nitrogen in soil solution: Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-), ammonium (NH4+) and total dissolved nitrogen concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+).
Resumo:
Silicon isotopes are a powerful tool to investigate the cycling of dissolved silicon (Si). In this study the distribution of the Si isotope composition of dissolved silicic acid (d30Si(OH)4) was analyzed in the water column of the Eastern Equatorial Pacific (EEP) where one of the globally largest Oxygen Minimum Zones (OMZs) is located. Samples were collected at 7 stations along two meridional transects from the equator to 14°S at 85°50'W and 82°00'W off the Ecuadorian and Peruvian coast. Surface waters show a large range in isotope compositions d30Si(OH)4 (+2.2 per mil to +4.4 per mil) with the highest values found at the southernmost station at 14°S. This station also revealed the most depleted silicic acid concentrations (0.2 µmol/kg), which is a function of the high degree of Si utilization by diatoms and admixture with waters from highly productive areas. Samples within the upper water column and the OMZ at oxygen concentrations below 10 µmol/kg are characterized by a large range in d30Si(OH)4, which mainly reflects advection and mixing of different water masses, even though the highly dynamic hydrographic system of the upwelling area off Peru does not allow the identification of clear Si isotope signals for distinct water masses. Therefore we cannot rule out that also dissolution processes have an influence on the d30Si(OH)4 signature in the subsurface water column. Deep water masses (>2000 m) in the study area show a mean d30Si(OH)4 of +1.2±0.2 per mil, which is in agreement with previous studies from the eastern and central Pacific. Comparison of the new deep water data of this study and previously published data from the central Pacific and Southern Ocean reveal substantially higher d30Si(OH)4 values than deep water signatures from the North Pacific. As there is no clear correlation between d30Si(OH)4 and silicic acid concentrations in the entire data set the distribution of d30Si(OH)4 signatures in deep waters of the Pacific is considered to be mainly a consequence of the mixing of several end member water masses with distinct Si isotope signatures including Lower Circumpolar Deep Water (LCDW) and North Pacific Deep Water (NPDW).