914 resultados para Soil drying effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Offshore structures with numerous applications in different environments throughout the world and used at different depths. Due to the expansion of marine industries, including offshore oil industry in Iran , particularly in the Persian Gulf region, in order to more accurately model these structures and to prevent incidents such as the Overturning of the platform serious damage to the South Pars Phase ١٣ was platforms, the use New Technic is essential technologies. One of the methods that are used in the construction of offshore wind turbines, using a pre-pile. In this method, a template is constructed with the dimensions specified in the workshop. After making templates using special vessels for placement in the desired location on the sea bed is carried, then the template is placed on the sea bed, Then, using a hammer for Pile Driving Operation Started Vibration hammer and fit the template of 3 or 4 piles of crushed within this template on the seabed . The next step piling, templates have been removed from the site And Jacket placed on piles. The system was installed on the deck on piles and Consequently Deck Load pile inserted on .It should be noted that the design of these types of platforms, base diameter of the pile diameter independent of the choice as one of the major advantages of this system is. This thesis examines a Template Fixed Platform in the oil Soroush Using the Pre-Piling and the Common Piling systems in the Persian Gulf were studied and the effect of different design compared to the Pre-Piling Platforms Persian Gulf were evaluated. The results suggest that Pre-Piling system compared with conventional systems piling in the Persian Gulf, as a more appropriate model structure and behavior Top Model economic efficiency is selected. It should be noted that all calculations and analyzes were performed using Software Abaqus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presumed synergistic effect of combined amendment of crude oil spiked soil with oil palm bunch ash and sawdust was carried out in a laboratory experiment. Two kilogram (2 kg) of sandy soil was placed in each of five plastic vessels labeled TA, TB, TC, TD and TE. TA was left in its natural state while the others were each polluted with 6.7% v/w of crude oil. TB was not given any remediation amendment. TC and TD were each amended with 13.3% of oil palm bunch ash and sawdust respectively while TE was amended with 13.3% each of oil palm bunch ash and sawdust. The setups were replicated five times and watered twice weekly. Results showed that soil pH increased from 8.7±0.04 to 10.5±0.06, 5.3±0.01 to 8.5±0.04 and 5.6±0.18 to 11.5±0.15 for TC, TD and TE respectively. Percentage total petroleum hydrocarbon contents reduced by 65% for TC, TD and 52% for TE. Total organic carbon increased from 7.6±0.7 to 8.5±0.5%%, reduced from 4.0±0.1% to 3.7±0.3% and from 4.1±0.1% to 2.2±1.0% TC, TD and TE respectively. Total nitrogen increased from 0.66±0.1 to 0.69±0.0% for TC, remained nearly the same for TD and reduced from 0.4±0.0 to 0.2±0.0% for TE while average phosphorus increased from 0.4±0.0 to 23.0±4.2 mg/kg, 0.3±0.0 to 1.8±0.4 mg/kg and from 0.2±1.0 mg/kg to 52.6±4.6 mg/kg for TC, TD and TE respectively. Conclusively, combined amendment with oil palm bunch ash and sawdust did not induce synergism in soil total petroleum hydrocarbon content reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms in the plant rhizosphere, the zone under the influence of roots, and phyllosphere, the aboveground plant habitat, exert a strong influence on plant growth, health, and protection. Tomatoes and cucumbers are important players in produce safety, and the microbial life on their surfaces may contribute to their fitness as hosts for foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. External factors such as agricultural inputs and environmental conditions likely also play a major role. However, the relative contributions of the various factors at play concerning the plant surface microbiome remain obscure, although this knowledge could be applied to crop protection from plant and human pathogens. Recent advances in genomic technology have made investigations into the diversity and structure of microbial communities possible in many systems and at multiple scales. Using Illumina sequencing to profile particular regions of the 16S rRNA gene, this study investigates the influences of climate and crop management practices on the field-grown tomato and cucumber microbiome. The first research chapter (Chapter 3) involved application of 4 different soil amendments to a tomato field and profiling of harvest-time phyllosphere and rhizosphere microbial communities. Factors such as water activity, soil texture, and field location influenced microbial community structure more than soil amendment use, indicating that field conditions may exert more influence on the tomato microbiome than certain agricultural inputs. In Chapter 4, the impact of rain on tomato and cucumber-associated microbial community structures was evaluated. Shifts in bacterial community composition and structure were recorded immediately following rain events, an effect which was partially reversed after 4 days and was strongest on cucumber fruit surfaces. Chapter 5 focused on the contribution of insect visitors to the tomato microbiota, finding that insects introduced diverse bacterial taxa to the blossom and green tomato fruit microbiome. This study advances our understanding of the factors that influence the microbiomes of tomato and cucumber. Farms are complex environments, and untangling the interactions between farming practices, the environment, and microbial diversity will help us develop a comprehensive understanding of how microbial life, including foodborne pathogens, may be influenced by agricultural conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influences of clearing native vegetation (Caatinga) in contour strips at 25 cm vertical interval on evaporation losses in cleared strips, annual runoff efficiency and annuall soil loss on gently sloped micro-waterheds in the arid zones of Northeast Brazil are reported. The alternate native vegetation (Caatinga) strips function very effectively as windbreaks thus reducing evaporation losses substantially in the leeward cleared strips. The runoff measured at the micro-watershed with cleared strips was many-fold lower than the runoff obtained at a completely denuded watershed even when it was protected by narrow based channel terraces. However, the annual runoff efficiency can be significantly increased in a strip cleared watershed if narrow based channel terraces are provided on the lower side of cleared strips. The annual soil losses in strip cleared watersheds as well as completely denuded waterhed of gentle slopes were negligible. Thus clearing land in alternate contour strips on a micro-watersheds shall substantially improve crop water use efficiency without creating any significant erosion problems. Additionally this treatment will increase runoff for water harvesting for irrigation purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia - UL

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the response of the Champaka pineapple to inoculation with the diazotrophic bacterium Asaia bogorensis (strain 219) when grown with organic fertilizer in an irrigated sapota orchard. Plantlets were transplanted to tubes containing a mixture of worm compost and vermiculite and inoculated with 108 bacterial cells. After five and a half months of acclimatization the plantlets were transplanted in furrows in the sapota orchard. Fertilizer was placed at the bottom of the furrows and covered with three doses (2.5; 5.0 and 7.5 L linear m−1 row) of three organic composts. The successful association of the plantlets with the diazo-trophic bacterium was confirmed by most probable number analysis before transferring to the field. Plants inoculated with strain AB219 showed the greatest initial leaf growth and produced the heaviest fruits compared to uninoculated plants. Plant growth and fruit yield increased with increasing compost dosages. The results suggested that Champaka pineapple benefited from the association of A. bogorensis (strain 219) when grown under irrigation and with organic fertilizer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tillage systems strongly affect nutrient transformations and plant availability. The objective of this study was to assess the nitrate dynamic in soil solution in different tillage systems with use of plant cocktail as green manure in fertilized melon (Cucumis melon) in Brazilian semi-arid. The treatments were arranged in four blocks in a split-plot design and included three types of cover crops and two tillage systems, conventional tillage (CT) and no-till (NT). The data showed no strong effect of plant cocktails composition on NO3-N dynamic in the soil. Mean concentration of NO3-N ranged from 19.45 mg L-1 at 15 cm to 60.16 mg L-1 at 50 cm soil depth, indicating high leachability. No significant differences were observed between NT and CT treatments for 15 cm depth. The high soil moisture content at ~ 30 cm depth concentrated high NO3-N in all treatments, mean of 54.27 mg L-1 to NT and 54.62 mg L-1 to CT. The highest NO3-N concentration was observed at 50 cm depth in TC (60.16 mg L-1). High concentration of NO3-N in CT may be attributed to increase in decomposition of soil organic matter and crop residues incorporated into the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine the effect of the secondary metabolites from Penicillium sp. H9318 on cytotoxicity and cell cycle progression. Methods: A yeast PP1 inhibitory screening system was carried out to confirm the presence of anti- PP1c activity in crude acetone extracts of strain H9318. The extracts were fractionated and identified as Fraction S1 and Citrinin 9318 (CTN9318). Various cancer cell lines were used to test for the toxicity of the crude acetone extracts, Fraction S1 and Citrinin 9318, using MTT viability assay. Results: It was found that a colorectal cancer cell line, HT-29, was susceptible to Fraction S1 and Citrinin 9318. A propidium iodide (PI)-incorporated DNA assay was used to show that there was G2/M arrest in HT-29 by Citrinin 9318. Conclusion: Citrinin 9318 inhibits the viability of HT-29 via mitotic block. The results suggest that Citrinin 9318 is capable of exerting cytotoxicity and mitotic arrest in a colon cancer cell line, HT29

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the effect of Astragalus membranaceus (Fisch.) Bunge. extract (AMBE) on streptozotocin-induced diabetic rats. Methods: The aqueous extract of AMB was obtained by steeping the dried Astragalus membranaceus (Fisch.) Bunge. in water at 60 oC three times, each for 1 h, before first drying in an oven at 100 oC and then freeze-drying the last extract thus obtained. Diabete model rats was induced by a single intraperitoneal injection of a freshly prepared solution of streptozotocin (50 mg/kg). The rats were randomly divided into 6 groups of ten rats each: negative control group, normal control group, reference group (glibenclamide1 mg/kgbody weight) as well as AMB extract groups, namely, 40, 80 and 160 mg/kg body weight. Antihyperglycemic effect was measured by blood glucose and plasma insulin levels. Oxidative stress was evaluated in liver and kidney by antioxidant markers, viz, lipidperoxidation (LPO), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT), while blood serum levels of creatinine and urea were also determined in both diabetic control and treated rats. Results: Compared with diabetic rats, oral administration of AMBE at a concentration of 160 mg/kg daily for 30 days showed a significant decrease in fasting blood glucose (109.438 ± 3.52, p < 0.05) and increased insulin level (13.96 ± 0.74, p < 0.05). Furthermore, it significantly reduced biochemical parameters (serum creatinine, 0.86 ± 0.29, p < 0.05) and serum urea (45.14 ± 1.79, p < 0.05). The treatment also resulted in significant increase in GSH (49.21 ± 2.59, p < 0.05), GPx (11.96 ± 1.16, p < 0.05), SOD (14.13 ± 0.49, p < 0.05), CAT (83.25 ± 3.14, p < 0.05) level in the liver and kidney of diabetic rats. Conclusion: The results suggest that AMBE may effectively normalize impaired antioxidant status in streptozotocin-induced diabetes in a dose-dependent manner. AMBE has a protective effect against lipid peroxidation by scavenging free radicals and is thus capable of reducing the risk of diabetic complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0–10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content. Independent of the soil management, after six months, no significant differences in microaggregates were found regarding to the control plots. These results showed an increase in the stability of the macroaggregates when soil is amended with sludge, pinus mulch and straw much. This fact has been due to an increase in the number cementing agents due to: (i) the application of pinus, straw and sludge had resulted in the release of carbohydrates to the soil; and thus (ii) it has favored the development of a protective vegetation cover, which has increased the number of roots in the soil and the organic contribution to it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil degradation affects more than 52 million ha of land in counties of the European Union. This problem is particularly serious in Mediterranean areas, where the effects of anthropogenic activities (tillage on slopes, deforestation, and pasture production) add to problems caused by prolonged periods of drought and intense and irregular rainfall. Soil microbiota can be used as an indicator of the soil healthy in degraded areas. This is because soil microbiota participates in the cycle elements and in the organic matter decomposition. All this helps to the young plants establishment and in long term protect the soils against the erosion. During dry periods in the Mediterranean areas, the lack of water entering the soil matrix leads to a loss of soil microbiological activity and it turns into a lower soil production capabilities. Under these conditions, the aim of this study was to evaluate the positive effect on soil biological components produced by an hydro absorbent polymer (Terracottem). The aim of the experiment was to evaluate the impact assessment of an hydropolymer (Terracottem) on the soil biological components. An experimental flowerpot layout was established in June 2015 and 12 variants with different amount of Terracottem were applied as follow: i) 3.0 kg.m3 ; ii) 1.5 kg.m3 and; iii) 0 kg.m3. In all the variants were tested the further additives: a) 1% of glucose, b) 50 kg N.ha-1 of Mineral nitrogen, c) 1% of Glucose + 50 kg N.ha-1 of Mineral nitrogen d) control (no additive). According to natural conditions, humidity have been kept at 15% in all the variants. During four weeks, mineral nitrogen leaching and soil respiration have been measured in each flowerplot. Respiration has been quantified four times every time while moistening containers and alkaline soda lime has been used as a sorbent. The amount of CO 2 increase has been measured with the sorbent. Leaching of mineral nitrogen has been quantified by ion exchange resins (IER). IER pouches have been placed on the bottom of each container, and after completion of the experiment mineral nitrogen leaching has been evaluated by distillation and titration method. Results from respiration have shown statistically significant differences between the variants. According to control, soil with polymers have shown significant difference when comparing respiration with independence of the additive used. CO 2 production in the first week has exceeded the sum of the outputs of the following weeks. Mineral nitrogen leaching measurement has shown statistically significant differences. The lowest leaching has been occurred in control variant, while the highest in variant containing only the addition of mineral nitrogen. Research results may conclude that the biological part of the test soil is not limited by a lack of components, the only thing that suppresses its activity is the lack of moisture. After moistening it leads to a rapid growth of soil activity, without causing the nutrients loss. Besides, Terracottem has affected soil activity neither positively nor negatively, but it considers being a suitable tool for reducing the drought impact in arid and semi-arid areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation plays a fundamental role in soil conservation, so it is common to consider an increase in vegetation cover as one of the techniques to mitigate the effects of desertification in Mediterranean forest environments. There are two factors limiting the establishment and growth of seedlings in dry environments: (i) an excessive radiation and, (ii) the limited availability of water during the summer drought. During an afforestation plan, soil preparation is always necessary to reduce sapling mortality. The goal of this study was to analyze the effect of various organic amendments on soil according to chemical and hydrological properties, and to assess the effects of these parameters on an afforestal proposal under Mediterranean climate conditions. Five amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); sheep manure (SH) and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha -1 . Under bare soil conditions (C), most of mortalities occurred during the summer period of the first year. A substantial positive effect of SM, PM and HP on the survival rates have been clearly observed. Conversely, when the soil was amended with SH, the survival rate quickly decreased or remained more or less constant regarding to C. In this study, the lack of differences on chemical properties indicates that there may exist other reasons to justify the differences that were found in the pattern of vegetation. However, regarding to the hydrological properties some differences have been found. In C, soils were registered below the wilting point during 4 months a year, and therefore, in the area of water unusable by plants. These months were coinciding with the summer Mediterranean drought and can justify the high mortality found on plants. Conversely, in SM, PM and HP, soil moisture remained below the wilting point less period than C and, the plant available water was also higher. In these treatments, the survival sapling rates measured were the highest. SH showed water holding capacity slightly more limited than C. For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the PM, SM and HP have been proved as a significant method to reduce sapling mortality rates during the Mediterranean summer drought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence water levels have on CO2 and CH4 efflux were investigated at the Loxahatchee Impoundment Landscape Assessment (LILA) research facility, located in Boynton Beach, FL, USA. Measurements of CO2 efflux were taken for 24 h periods four times for one year from study plots. Laboratory incubations of intact soil cores were sampled for CO2, CH4, and redox potential. Additionally, soil cores from wet and dry condition were incubated for determination of enzyme activity and macronutrient limitation on decomposition of organic matter from study soils. Water levels had a significant negative influence on CO2 efflux and redox, but did not significantly influence CH4 efflux. Study plots were significantly different in CH4 efflux and redox potential. Labile carbon was more limiting to potential CO2 and CH4 production than phosphorus, with the effect significantly greater from dry conditions soils. Enzyme activity results were variable with greater macronutrient responses from dry condition soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Release of uranium from Na-autunite, an artificial mineral created as a result of polyphosphate injection in the subsurface at the DOE Hanford Site, takes place during slow dissolution of the mineral structure. Stability information of the uranyl-phosphate phases is limited to conditions involving pH, temperature, and a few aqueous organic materials. The carbonate ion, which creates very strong complexes with uranium, is the predominant ion in the groundwater composition. The polyphosphate technology with the formation of autunite was identified as the most feasible remediation strategy to sequester uranium in contaminated groundwater and soil in situ. The objectives of the experimental work were (i) to quantify the effect of bicarbonate on the stability of synthetic sodium meta-autunite created as a result of uranium stabilization through polyphosphate injection, (ii) calculate the kinetic rate law parameters of the uranium release from Na-autunite during dissolution, and (iii) to compare the process parameters with those obtained for natural calcium meta-autunite. Experiments were conducted using SPTF apparatus, which consists of syringe pumps for controlling flow rate, Teflon reactors and a heating/cooling system. 0.25 grams of synthetic Na-autunite was placed in the reactor and buffer solutions with varying bicarbonate concentrations (0.0005 to 0.003 M) at different pH (6 - 11) were pumped through the reactors. Experiments were conducted at four different temperatures in the range of 5 - 60oC. It was concluded that the rate of release of uranium from synthetic Na-autunite is directly correlated to the bicarbonate concentration. The rate of release of uranium increased from 1.90 x 10-12 at pH 6 to 2.64 x 10-10 (mol m-2 s-1) at pH 11 at 23oC over the bicarbonate concentration range tested. The activation energy values were invariant with the change in the bicarbonate concentration; however, pH is shown to influence the activation energy values. Uranyl hydroxides and uranyl carbonates complexes helped accelerate the dissolution of autunite mineral.