982 resultados para Sludge amendment
Resumo:
The Municipal Station of Americana, SP, Brazil, treats a volume of 400 l s-1 of effluent, of domestic and textile origin, and produces about 20 t of sludge per day. The plant horseradish, which contains high amount of peroxidases, was able to decolorize this effluent in 2 h and the solid waste in 2 days, at concentrations of 10 and 50%, respectively. However, there was an increase in the toxicity for the bioassays with Hydra attenuatta, Selenastrum capricornutum and lettuce seeds, indicating formation of more toxic substances. Since horseradish showed the ability to decolorize these residues, it can be used as pre-treatment resulting in a sludge of less complex composition.
Resumo:
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making
Resumo:
Membrane bioreactors (MBRs) are a combination of activated sludge bioreactors and membrane filtration, enabling high quality effluent with a small footprint. However, they can be beset by fouling, which causes an increase in transmembrane pressure (TMP). Modelling and simulation of changes in TMP could be useful to describe fouling through the identification of the most relevant operating conditions. Using experimental data from a MBR pilot plant operated for 462days, two different models were developed: a deterministic model using activated sludge model n°2d (ASM2d) for the biological component and a resistance in-series model for the filtration component as well as a data-driven model based on multivariable regressions. Once validated, these models were used to describe membrane fouling (as changes in TMP over time) under different operating conditions. The deterministic model performed better at higher temperatures (>20°C), constant operating conditions (DO set-point, membrane air-flow, pH and ORP), and high mixed liquor suspended solids (>6.9gL-1) and flux changes. At low pH (<7) or periods with higher pH changes, the data-driven model was more accurate. Changes in the DO set-point of the aerobic reactor that affected the TMP were also better described by the data-driven model. By combining the use of both models, a better description of fouling can be achieved under different operating conditions
Resumo:
Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5mgO2L-1 and a membrane specific aeration demand (SADm) of 1mh-1, where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1mh-1 doubled the values of transmembrane pressure, without recovery after achieving the initial conditions
Resumo:
This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at the end of the batch experiment (8 d) with the exception of Ifosfamide and Tamoxifen. These two recalcitrant compounds, together with Cyclophosphamide, were selected for further studies to test their degradability by T. versicolor under optimal growth conditions. Cyclophosphamide and Ifosfamide were inalterable during batch experiments both at high and low concentration, whereas Tamoxifen exhibited a decrease in its concentration along the treatment. Two positional isomers of a hydroxylated form of Tamoxifen were identified during this experiment using a high resolution mass spectrometry based on ultra-high performance chromatography coupled to an Orbitrap detector (LTQ-Velos Orbitrap). Finally the identified transformation products of Tamoxifen were monitored in the bioreactor run with real hospital wastewater
Resumo:
The growing concern of environmental surveillance of the quality of hydric resources guides the development of research on management of residues generated in water treatment plants (WTP). Approximately 8.000 WTPs in Brazil operate without a treatment program of the residues, disposing these effluents in the environment. This work evaluated WTP discharges into watercourses by collecting superficial waters, sediments and benthic samples at the town of Registro, São Paulo State, Brazil. Even though superficial waters and benthic samples showed no further contamination, sediment analysis pointed out that aluminum deposits detected near sludge discharges may represent a potential risk to the environment.
Resumo:
Dregs is an alkaline solid by-product generated in the cellulose manufacturing industry that could be used to correct soil acidity. The present study aimed to evaluate the chemical composition of this product and some of its properties. The dregs presented 354 g kg-1 of calcium, neutralization capacity of 80.3%, and pH 10.7, besides low concentration of sodium (10.2 g kg-1), lead (62.9 mg kg-1) and cadmium (5.6 mg kg-1). Thus, it is a product that can safely be used to increase the soil pH.
Resumo:
The plating process generates solid waste rich in heavy metals and aiming to reduce environmental impact of such waste, this work suggests a methodology for zinc reduction, through a 2(4) factorial planning, studying the influence of the following variables: acid concentration (15, 20 or 30% v/v), acid type (sulfuric or hydrochloric), acid volume (15, 20 or 25 mL) and extraction time (12, 24 or 36 h). Through this methodology it is possible to establish the optimal conditions (15 mL of a 30% hydrochloric acid concentration during 12 h) to get a 100% efficiency in zinc extraction.
Resumo:
El tractament de les aigües en nuclis menors de 2000 habitants es troba pendent de completar per part de l’Agència Catalana de l’Aigua més concretament al corresponent Pla de Sanejament d’Aigües Residuals Urbanes (PSARU). El nucli de La Nou de Gaià (al Tarragonès) es troba pendent de la construcció de la corresponent instal·lació de sanejament, projectada al 2007. Alternativament a les depuradores tradicionals basades en l’ús de formigó (o materials alternatius) i en la despesa elèctrica per assegurar una aeració i una evacuació dels fangs generats, existeixen tecnologies “toves”. Aquestes tecnologies, també conegudes com a “verdes”, es basen en imitar els sistemes naturals maximitzant el seu potencial d’autodepuració. A grans trets existeixen dos formes de depurar les aigües de forma ecològica”: llacunatges (existeix una capa d’aigua lliure) i filtres verds. El present estudi es basa en l’aplicació de filtres verds de morfologia vertical i flux subsuperficial, plantat amb canyes dels generes Scirpus o Phragmites. El resultat han estat 4 bases de 35*35 per a tractar un cabal de 150 m3/d i una població equivalent de 1272.
Resumo:
The influence of nitric-perchloric, aqua regia, dry ashing and microwave digestion methods, in combination with 100 and 200 mg of sample, on the characterization and recovery of nutrients in samples of sludge sewage, poultry, swine, quail and bovine manures, organic compost, organic substrate and humic material were studied. Nitric-perchloric digestion with 200 mg samples recovered the higher nutrient contents. The nitric-perchloric method recovered also low levels of K. Dry ashing caused S volatilization and microwave digestion produced dark color extracts and this impaired S determination. Aqua regia recovered the lowest contents of nutrients in the organic residues evaluated.
Resumo:
The alteration of soil chemicals and its influence on availability (DTPA extractant method) and phytoavailability (63Ni L-value, isotopic method) of Ni was studied in sewage sludge-amended soil at different pHs. The soil pHs were 4.3, 5.3 and 5.9 and the rates of sewage sludge (SS) 0, 15, 30, 45 and 60 Mg ha-1. The chemical and physicochemical soil characteristics were altered by the SS rate and increased the Ni availability and phytoavailability. The isotopic method (63Ni L-value) was more efficient in predicting the Ni phytoavailability that the Ni-DTPA extractant in soil pHs 5.3 and 5.9.
Resumo:
The Cd phytoavailability in sewage sludge-amended soils of different pHs using the 109Cd L-value isotopic method and Cd extracted by DTPA has been determined. Maize plants (Zea mais L.) were grown under greenhouse conditions in a xanthic ferralsol at different pHs amended with five sewage sludge (SS) rates, and labeled with 74 kBq kg-1 of 109Cd. The SS rates altered the properties of the soil chemicals and these influenced the isotopic parameter (L-value) and percent of Cd uptake by plants from soil (%Cdpdfs) and SS (%CdpdfSS). L-values and Cd extracted by DTPA correlate significantly with SS rates and Cd uptake by plants and are efficient for predicting the Cd phytoavailability in the sewage sludge-amended soil.
Resumo:
The present work aimed to characterize an aluminum industry by-product in natura (L.A. nat) and after phosphate and thermal pretreatments; evaluate the adsorption/desorption capacity of Cd and Pb by this L.A. nat form and after the aforementioned pretreatments, comparing them with an in natura iron mining by-product (L.F. nat). The L.A. nat presented a high pH as well as a high Na concentration and also an oxide-rich mineralogy. Pretreatment of the by-product had no significant effect upon Cd and Pd adsorption/desorption. The L.A. nat performed better than the L.F. nat as an Cd and Pb adsorbent.
Resumo:
The work reported here involved the characterization of sludges produced at water treatment plants in Jaboticabal-SP using FeCl3 as flocculant, and in Taquaritinga-SP and Manaus-AM using Al2(SO4)3 as flocculant. An evaluation was also made of the interaction of organic matter extracted from the sludges with different metal species. The results indicated that all the sludges produced at water treatment plants have an important agricultural potential and that their use depends on the characteristics of the raw water and the type of flocculant employed in conventional treatment. The humic substances extracted from the sludges showed different affinities for metal species, favoring eventual exchanges between potentially toxic metals and macro- and micronutrients. An alternative for the use of sludge in agriculture is to pretreat it to remove potentially toxic metals and enrich it with micro- and macronutrients that can be released to the plant.
Resumo:
This survey determined the physical and chemical properties of the gravel place where urban sludge from Rio Descoberto's Water Treatment Plant is disposed. Physical, chemical and biological analysis of the soil samples (n=54), sludge samples (n=2), chemical coagulant (n=20) and samples from superficial waters (n=9) and water table (n=60) were performed. As results we can emphasize the horizontal distribution of mineral phases like gibbsite, organic material, exchanged Ca, available Mn and P on the soils are originated from the sludge. Some of these mobile elements could stimulate the growing of the vegetation, but they also could contaminate the water table.