990 resultados para Significance driven computation
Resumo:
A new scalable Monotonically Integrated Large Eddy Simulation (MILES) method based on the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) has been applied for the simulation of unsteady flow around NACA0012 airfoil at Re = 400,000 and M = 0.058. The flow solution is coupled with the Ffowcs Williams-Hawkings formulation for far-field noise prediction. The computational modeling results are presented for several computational grid resolutions: 8, 16, and 32 million grid cells and compared with the experimental data available.
Resumo:
We consider a method for approximate inference in hidden Markov models (HMMs). The method circumvents the need to evaluate conditional densities of observations given the hidden states. It may be considered an instance of Approximate Bayesian Computation (ABC) and it involves the introduction of auxiliary variables valued in the same space as the observations. The quality of the approximation may be controlled to arbitrary precision through a parameter ε > 0. We provide theoretical results which quantify, in terms of ε, the ABC error in approximation of expectations of additive functionals with respect to the smoothing distributions. Under regularity assumptions, this error is, where n is the number of time steps over which smoothing is performed. For numerical implementation, we adopt the forward-only sequential Monte Carlo (SMC) scheme of [14] and quantify the combined error from the ABC and SMC approximations. This forms some of the first quantitative results for ABC methods which jointly treat the ABC and simulation errors, with a finite number of data and simulated samples. © Taylor & Francis Group, LLC.
Resumo:
Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.
Resumo:
We propose a Newton-like iteration that evolves on the set of fixed dimensional subspaces of ℝ n and converges locally cubically to the invariant subspaces of a symmetric matrix. This iteration is compared in terms of numerical cost and global behavior with three other methods that display the same property of cubic convergence. Moreover, we consider heuristics that greatly improve the global behavior of the iterations.
Resumo:
We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in ℝn. In these formulas, p-planes are represented as the column space of n × p matrices. The Newton method on abstract Riemannian manifolds proposed by Smith is made explicit on the Grassmann manifold. Two applications - computing an invariant subspace of a matrix and the mean of subspaces - are worked out.
Resumo:
We study the global behaviour of a Newton algorithm on the Grassmann manifold for invariant subspace computation. It is shown that the basins of attraction of the invariant subspaces may collapse in case of small eigenvalue gaps. A Levenberg-Marquardt-like modification of the algorithm with low numerical cost is proposed. A simple strategy for choosing the parameter is shown to dramatically enlarge the basins of attraction of the invariant subspaces while preserving the fast local convergence.
Resumo:
The movement of Au catalysts during growth of InAs on GaAs nanowires has been carefully investigated by transmission electron microscopy. It has been found that Au catalysts preferentially stay on { 112 } B GaAs sidewalls. Since a {112} surface is composed of a {111} facet and a {002} facet and since {111} facets are polar facets for the zinc-blende structure, this crystallographic preference is attributed to the different interface energies caused by the different polar facets. We anticipate that these observations will be useful for the design of nanowire heterostructure based devices. © 2009 American Institute of Physics.
Resumo:
The structural and morphological characteristics of InAs/GaAs radial nanowire heterostructures were investigated using transmission electron microscopy. It has been found that the radial growth of InAs was preferentially initiated on the { 112 } A sidewalls of GaAs nanowires. This preferential deposition leads to extraordinarily asymmetric InAs/GaAs radial nanowire heterostructures. Such formation of radial nanowire heterostructures provides an opportunity to engineer hierarchical nanostructures, which further widens the potential applications of semiconductor nanostructures. © 2008 American Institute of Physics.
Resumo:
Creating a realistic talking head, which given an arbitrary text as input generates a realistic looking face speaking the text, has been a long standing research challenge. Talking heads which cannot express emotion have been made to look very realistic by using concatenative approaches [Wang et al. 2011], however allowing the head to express emotion creates a much more challenging problem and model based approaches have shown promise in this area. While 2D talking heads currently look more realistic than their 3D counterparts, they are limited both in the range of poses they can express and in the lighting conditions that they can be rendered under. Previous attempts to produce videorealistic 3D expressive talking heads [Cao et al. 2005] have produced encouraging results but not yet achieved the level of realism of their 2D counterparts.
Resumo:
A numerical study is presented showing the structural response and sound radiation from a range of thin shell structures excited by a point force: a baffled flat plate, a sphere, a family of spheroids and a family of closed circular cylinders. All the structures have the same material properties, thickness and total surface area so the asymptotic modal density is the same. Dramatic differences are shown in the total radiated sound power for the different shells. It was already known that the flat plate and the sphere behave very differently. These results show that the cylinders and, particularly, the spheroids show patterns that are not intermediate between the two but instead display new features: in certain frequency ranges the radiated sound power can be at least an order of magnitude greater than either the plate or the sphere. © 2013 Elsevier Ltd.
Resumo:
Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation.