840 resultados para Signal-to-noise Ratio
Resumo:
The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.
Resumo:
Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant's volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and found that regions were identified that corresponded with task-related regions identified in the literature. These findings suggest that our technique is a robust method for group-level analysis with MEG beamformer images.
Resumo:
In recent years, wireless communication infrastructures have been widely deployed for both personal and business applications. IEEE 802.11 series Wireless Local Area Network (WLAN) standards attract lots of attention due to their low cost and high data rate. Wireless ad hoc networks which use IEEE 802.11 standards are one of hot spots of recent network research. Designing appropriate Media Access Control (MAC) layer protocols is one of the key issues for wireless ad hoc networks. ^ Existing wireless applications typically use omni-directional antennas. When using an omni-directional antenna, the gain of the antenna in all directions is the same. Due to the nature of the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 standards, only one of the one-hop neighbors can send data at one time. Nodes other than the sender and the receiver must be either in idle or listening state, otherwise collisions could occur. The downside of the omni-directionality of antennas is that the spatial reuse ratio is low and the capacity of the network is considerably limited. ^ It is therefore obvious that the directional antenna has been introduced to improve spatial reutilization. As we know, a directional antenna has the following benefits. It can improve transport capacity by decreasing interference of a directional main lobe. It can increase coverage range due to a higher SINR (Signal Interference to Noise Ratio), i.e., with the same power consumption, better connectivity can be achieved. And the usage of power can be reduced, i.e., for the same coverage, a transmitter can reduce its power consumption. ^ To utilizing the advantages of directional antennas, we propose a relay-enabled MAC protocol. Two relay nodes are chosen to forward data when the channel condition of direct link from the sender to the receiver is poor. The two relay nodes can transfer data at the same time and a pipelined data transmission can be achieved by using directional antennas. The throughput can be improved significant when introducing the relay-enabled MAC protocol. ^ Besides the strong points, directional antennas also have some explicit drawbacks, such as the hidden terminal and deafness problems and the requirements of retaining location information for each node. Therefore, an omni-directional antenna should be used in some situations. The combination use of omni-directional and directional antennas leads to the problem of configuring heterogeneous antennas, i e., given a network topology and a traffic pattern, we need to find a tradeoff between using omni-directional and using directional antennas to obtain a better network performance over this configuration. ^ Directly and mathematically establishing the relationship between the network performance and the antenna configurations is extremely difficult, if not intractable. Therefore, in this research, we proposed several clustering-based methods to obtain approximate solutions for heterogeneous antennas configuration problem, which can improve network performance significantly. ^ Our proposed methods consist of two steps. The first step (i.e., clustering links) is to cluster the links into different groups based on the matrix-based system model. After being clustered, the links in the same group have similar neighborhood nodes and will use the same type of antenna. The second step (i.e., labeling links) is to decide the type of antenna for each group. For heterogeneous antennas, some groups of links will use directional antenna and others will adopt omni-directional antenna. Experiments are conducted to compare the proposed methods with existing methods. Experimental results demonstrate that our clustering-based methods can improve the network performance significantly. ^
Resumo:
We present Spitzer IRS mid-infrared spectra for 15 gravitationally lensed, 24 μm-selected galaxies, and combine the results with four additional very faint galaxies with IRS spectra in the literature. The median intrinsic 24 μm flux density of the sample is 130 μJy, enabling a systematic survey of the spectral properties of the very faint 24 μm sources that dominate the number counts of Spitzer cosmological surveys. Six of the 19 galaxy spectra (32%) show the strong mid-IR continuua expected of AGNs; X-ray detections confirm the presence of AGNs in three of these cases, and reveal AGNs in two other galaxies. These results suggest that nuclear accretion may contribute more flux to faint 24 μm-selected samples than previously assumed. Almost all the spectra show some aromatic (PAH) emission features; the measured aromatic flux ratios do not show evolution from z = 0. In particular, the high signal-to-noise mid-IR spectrum of SMM J163554.2+661225 agrees remarkably well with low-redshift, lower luminosity templates. We compare the rest-frame 8 μm and total infrared luminosities of star-forming galaxies, and find that the behavior of this ratio with total IR luminosity has evolved modestly from z = 2 to z = 0. Since the high aromatic-to-continuum flux ratios in these galaxies rule out a dominant contribution by AGNs, this finding implies systematic evolution in the structure and/or metallicity of infrared sources with redshift. It also has implications for the estimates of star-forming rates inferred from 24 μm measurements, in the sense that at z ~ 2, a given observed frame 24 μm luminosity corresponds to a lower bolometric luminosity than would be inferred from low-redshift templates of similar luminosity at the corresponding rest wavelength.
Resumo:
Magnetic field inhomogeneity results in image artifacts including signal loss, image blurring and distortions, leading to decreased diagnostic accuracy. Conventional multi-coil (MC) shimming method employs both RF coils and shimming coils, whose mutual interference induces a tradeoff between RF signal-to-noise (SNR) ratio and shimming performance. To address this issue, RF coils were integrated with direct-current (DC) shim coils to shim field inhomogeneity while concurrently emitting and receiving RF signal without being blocked by the shim coils. The currents applied to the new coils, termed iPRES (integrated parallel reception, excitation and shimming), were optimized in the numerical simulation to improve the shimming performance. The objectives of this work is to offer a guideline for designing the optimal iPRES coil arrays to shim the abdomen.
In this thesis work, the main field () inhomogeneity was evaluated by root mean square error (RMSE). To investigate the shimming abilities of iPRES coil arrays, a set of the human abdomen MRI data was collected for the numerical simulations. Thereafter, different simplified iPRES(N) coil arrays were numerically modeled, including a 1-channel iPRES coil and 8-channel iPRES coil arrays. For 8-channel iPRES coil arrays, each RF coil was split into smaller DC loops in the x, y and z direction to provide extra shimming freedom. Additionally, the number of DC loops in a RF coil was increased from 1 to 5 to find the optimal divisions in z direction. Furthermore, switches were numerically implemented into iPRES coils to reduce the number of power supplies while still providing similar shimming performance with equivalent iPRES coil arrays.
The optimizations demonstrate that the shimming ability of an iPRES coil array increases with number of DC loops per RF coil. Furthermore, the z direction divisions tend to be more effective in reducing field inhomogeneity than the x and y divisions. Moreover, the shimming performance of an iPRES coil array gradually reach to a saturation level when the number of DC loops per RF coil is large enough. Finally, when switches were numerically implemented in the iPRES(4) coil array, the number of power supplies can be reduced from 32 to 8 while keeping the shimming performance similar to iPRES(3) and better than iPRES(1). This thesis work offers a guidance for the designs of iPRES coil arrays.
Resumo:
We report results from the analysis of intact polar lipids (IPLs) in sediments from Ocean Drilling Program Sites 1257 and 1258. IPLs, constituting the cell membranes of living organisms, were detected in organic-lean sediments but not in underlying organic-rich black shales. Microbial activity in organic-lean sediments is likely due to sulfate-dependent oxidation of methane whereas difficulties detecting IPLs in black shales are interpreted to result from unfavorable signal-to-noise ratios due to low cell concentrations in combination with extremely high analytical noise created by uncharacterized organic matrix. IPLs found are consistent with a low-diversity community of archaea and bacteria. The concentrations of IPLs are more than one order of magnitude lower than those in Neogene deep subsurface sediments at the Peruvian margin, suggestive of significantly lower cell concentrations in Demerara Rise. This finding is consistent with inferred low rates of subsurface microbial activity.
Resumo:
In this thesis, novel analog-to-digital and digital-to-analog generalized time-interleaved variable bandpass sigma-delta modulators are designed, analysed, evaluated and implemented that are suitable for high performance data conversion for a broad-spectrum of applications. These generalized time-interleaved variable bandpass sigma-delta modulators can perform noise-shaping for any centre frequency from DC to Nyquist. The proposed topologies are well-suited for Butterworth, Chebyshev, inverse-Chebyshev and elliptical filters, where designers have the flexibility of specifying the centre frequency, bandwidth as well as the passband and stopband attenuation parameters. The application of the time-interleaving approach, in combination with these bandpass loop-filters, not only overcomes the limitations that are associated with conventional and mid-band resonator-based bandpass sigma-delta modulators, but also offers an elegant means to increase the conversion bandwidth, thereby relaxing the need to use faster or higher-order sigma-delta modulators. A step-by-step design technique has been developed for the design of time-interleaved variable bandpass sigma-delta modulators. Using this technique, an assortment of lower- and higher-order single- and multi-path generalized A/D variable bandpass sigma-delta modulators were designed, evaluated and compared in terms of their signal-to-noise ratios, hardware complexity, stability, tonality and sensitivity for ideal and non-ideal topologies. Extensive behavioural-level simulations verified that one of the proposed topologies not only used fewer coefficients but also exhibited greater robustness to non-idealties. Furthermore, second-, fourth- and sixth-order single- and multi-path digital variable bandpass digital sigma-delta modulators are designed using this technique. The mathematical modelling and evaluation of tones caused by the finite wordlengths of these digital multi-path sigmadelta modulators, when excited by sinusoidal input signals, are also derived from first principles and verified using simulation and experimental results. The fourth-order digital variable-band sigma-delta modulator topologies are implemented in VHDL and synthesized on Xilinx® SpartanTM-3 Development Kit using fixed-point arithmetic. Circuit outputs were taken via RS232 connection provided on the FPGA board and evaluated using MATLAB routines developed by the author. These routines included the decimation process as well. The experiments undertaken by the author further validated the design methodology presented in the work. In addition, a novel tunable and reconfigurable second-order variable bandpass sigma-delta modulator has been designed and evaluated at the behavioural-level. This topology offers a flexible set of choices for designers and can operate either in single- or dual-mode enabling multi-band implementations on a single digital variable bandpass sigma-delta modulator. This work is also supported by a novel user-friendly design and evaluation tool that has been developed in MATLAB/Simulink that can speed-up the design, evaluation and comparison of analog and digital single-stage and time-interleaved variable bandpass sigma-delta modulators. This tool enables the user to specify the conversion type, topology, loop-filter type, path number and oversampling ratio.
Resumo:
We investigate device-to-device (D2D) communication underlaying cellular networks with M-antenna base stations. We consider both beamforming (BF) and interference cancellation (IC) strategies under quantized channel state information (CSI), as well as, perfect CSI. We derive tight closed-form approximations of the ergodic achievable rate which hold for arbitrary transmit power, location of users and number of antennas. Based on these approximations, we derive insightful asymptotic expressions for three special cases namely high signal-to-noise (SNR), weak interference, and large M. In particular, we show that in the high SNR regime a ceiling effect exists which depends on the received signal-to-interference ratio and the number of antennas. Moreover, the achievable rate scales logarithmically with M. The ergodic achievable rate is shown to scale logarithmically with SNR and the antenna number in the weak interference case. When the BS is equipped with large number of antennas, we find that the ergodic achievable rate under quantized CSI reaches a saturated value, whilst it scales as log2M under perfect CSI.
Resumo:
Large-scale multiple-input multiple-output (MIMO) communication systems can bring substantial improvement in spectral efficiency and/or energy efficiency, due to the excessive degrees-of-freedom and huge array gain. However, large-scale MIMO is expected to deploy lower-cost radio frequency (RF) components, which are particularly prone to hardware impairments. Unfortunately, compensation schemes are not able to remove the impact of hardware impairments completely, such that a certain amount of residual impairments always exists. In this paper, we investigate the impact of residual transmit RF impairments (RTRI) on the spectral and energy efficiency of training-based point-to-point large-scale MIMO systems, and seek to determine the optimal training length and number of antennas which maximize the energy efficiency. We derive deterministic equivalents of the signal-to-noise-and-interference ratio (SINR) with zero-forcing (ZF) receivers, as well as the corresponding spectral and energy efficiency, which are shown to be accurate even for small number of antennas. Through an iterative sequential optimization, we find that the optimal training length of systems with RTRI can be smaller compared to ideal hardware systems in the moderate SNR regime, while larger in the high SNR regime. Moreover, it is observed that RTRI can significantly decrease the optimal number of transmit and receive antennas.
Resumo:
Background: Indices predictive of central obesity include waist circumference (WC) and waist-to-height ratio (WHtR). The aims of this study were 1) to establish a Colombian youth smoothed centile charts and LMS tables for WC and WHtR and 2) to evaluate the utility of these parameters as predictors of overweight and obesity. Method: A cross-sectional study whose sample population comprised 7954 healthy Colombian schoolchildren [boys n=3460 and girls n=4494, mean (standard deviation) age 12.8 (2.3) years old]. Weight, height, body mass index (BMI), WC and WHtR and its percentiles were calculated. Appropriate cut-offs point of WC and WHtR for overweight and obesity, as defined by the International Obesity Task Force (IOTF) definitions, were selected using receiver operating characteristic (ROC) analysis. The discriminating power of WC and WHtR was expressed as area under the curve (AUC). Results: Reference values for WC and WHtR are presented. Mean WC increased and WHtR decreased with age for both genders. We found a moderate positive correlation between WC and BMI (r= 0.756, P < 0.01) and WHtR and BMI (r= 0.604, P < 0.01). The ROC analysis showed a high discrimination power in the identification of overweight and obesity for both measures in our sample population. Overall, WHtR was slightly a better predictor for overweight/obesity (AUC 95% CI 0.868-0.916) than the WC (AUC 95% CI 0.862-0.904). Conclusion: This paper presents the first sex- and age-specific WC and WHtR percentiles for both measures among Colombian children and adolescents aged 9–17.9 years. By providing LMS tables for Latin-American people based on Colombian reference data, we hope to provide quantitative tools for the study of obesity and its comorbidities.
Resumo:
An alternative approach to port decoupling and matching of arrays with tightly coupled elements is proposed. The method is based on the inherent decoupling effect obtained by feeding the orthogonal eigenmodes of the array. For this purpose, a modal feed network is connected to the array. The decoupled external ports of the feed network may then be matched independently by using conventional matching circuits. Such a system may be used in digital beam forming applications with good signal-to-noise performance. The theory is applicable to arrays with an arbitrary number of elements, but implementation is only practical for smaller arrays. The principle is illustrated by means of two examples.
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
A new approach to pattern recognition using invariant parameters based on higher order spectra is presented. In particular, invariant parameters derived from the bispectrum are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale and amplification invariant, as well. A minimal set of these invariants is selected as the feature vector for pattern classification, and a minimum distance classifier using a statistical distance measure is used to classify test patterns. The classification technique is shown to distinguish two similar, but different bolts given their one-dimensional profiles. Pattern recognition using higher order spectral invariants is fast, suited for parallel implementation, and has high immunity to additive Gaussian noise. Simulation results show very high classification accuracy, even for low signal-to-noise ratios.
Resumo:
A small array composed of three monopole elements with very small element spacing on the order of λ/6 to λ/20 is considered for application in adaptive beamforming. The properties of this 3-port array are governed by strong mutual coupling. It is shown that for signal-to-noise maximization, it is not sufficient to adjust the weights to compensate for the effects of mutual coupling. The necessity for a RF-decoupling network (RF-DN) and its simple realization are shown. The array with closely spaced elements together with the RF-DN represents a superdirective antenna with a directivity of more than 10 dBi. It is shown that the required fractional frequency bandwidth and the available unloaded Q of the antenna and RF-DN structure determine the lower limit for the element spacing.