931 resultados para Signal processing -- Digital techniques
Resumo:
Sensor networks are one of the fastest growing areas in broadwireless ad hoc networking (?Eld. A sensor node, typically'contains signal-processing circuits, micro-controllers and awireless transmitter/receiver antenna. Energy saving is oneof the critical issue for sensor networks since most sensorsare equipped with non-rechargeable batteries that have limited lifetime.In thiswork, four routing protocols for wireless sensor networks vizFlooding, Gossiping, GBR and LEACH have been simulated using Tiny OS and their power consumption is studied usingcaorwreiredTOoSuStIuMs.ingAMirceaal2izMaotitoens.of these protocols has been carried out using mica 2 motes
Resumo:
Digit speech recognition is important in many applications such as automatic data entry, PIN entry, voice dialing telephone, automated banking system, etc. This paper presents speaker independent speech recognition system for Malayalam digits. The system employs Mel frequency cepstrum coefficient (MFCC) as feature for signal processing and Hidden Markov model (HMM) for recognition. The system is trained with 21 male and female voices in the age group of 20 to 40 years and there was 98.5% word recognition accuracy (94.8% sentence recognition accuracy) on a test set of continuous digit recognition task.
Resumo:
In this paper, we propose a handwritten character recognition system for Malayalam language. The feature extraction phase consists of gradient and curvature calculation and dimensionality reduction using Principal Component Analysis. Directional information from the arc tangent of gradient is used as gradient feature. Strength of gradient in curvature direction is used as the curvature feature. The proposed system uses a combination of gradient and curvature feature in reduced dimension as the feature vector. For classification, discriminative power of Support Vector Machine (SVM) is evaluated. The results reveal that SVM with Radial Basis Function (RBF) kernel yield the best performance with 96.28% and 97.96% of accuracy in two different datasets. This is the highest accuracy ever reported on these datasets
Resumo:
A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.
Resumo:
Modeling nonlinear systems using Volterra series is a century old method but practical realizations were hampered by inadequate hardware to handle the increased computational complexity stemming from its use. But interest is renewed recently, in designing and implementing filters which can model much of the polynomial nonlinearities inherent in practical systems. The key advantage in resorting to Volterra power series for this purpose is that nonlinear filters so designed can be made to work in parallel with the existing LTI systems, yielding improved performance. This paper describes the inclusion of a quadratic predictor (with nonlinearity order 2) with a linear predictor in an analog source coding system. Analog coding schemes generally ignore the source generation mechanisms but focuses on high fidelity reconstruction at the receiver. The widely used method of differential pnlse code modulation (DPCM) for speech transmission uses a linear predictor to estimate the next possible value of the input speech signal. But this linear system do not account for the inherent nonlinearities in speech signals arising out of multiple reflections in the vocal tract. So a quadratic predictor is designed and implemented in parallel with the linear predictor to yield improved mean square error performance. The augmented speech coder is tested on speech signals transmitted over an additive white gaussian noise (AWGN) channel.
Resumo:
This paper describes certain findings of intonation and intensity study of emotive speech with the minimal use of signal processing algorithms. This study was based on six basic emotions and the neutral, elicited from 1660 English utterances obtained from the speech recordings of six Indian women. The correctness of the emotional content was verified through perceptual listening tests. Marked similarity was noted among pitch contours of like-worded, positive valence emotions, though no such similarity was observed among the four negative valence emotional expressions. The intensity patterns were also studied. The results of the study were validated using arbitrary television recordings for four emotions. The findings are useful to technical researchers, social psychologists and to the common man interested in the dynamics of vocal expression of emotions
Resumo:
In a leading service economy like India, services lie at the very center of economic activity. Competitive organizations now look not only at the skills and knowledge, but also at the behavior required by an employee to be successful on the job. Emotionally competent employees can effectively deal with occupational stress and maintain psychological well-being. This study explores the scope of the first two formants and jitter to assess seven common emotional states present in the natural speech in English. The k-means method was used to classify emotional speech as neutral, happy, surprised, angry, disgusted and sad. The accuracy of classification obtained using raw jitter was more than 65 percent for happy and sad but less accurate for the others. The overall classification accuracy was 72% in the case of preprocessed jitter. The experimental study was done on 1664 English utterances of 6 females. This is a simple, interesting and more proactive method for employees from varied backgrounds to become aware of their own communication styles as well as that of their colleagues' and customers and is therefore socially beneficial. It is a cheap method also as it requires only a computer. Since knowledge of sophisticated software or signal processing is not necessary, it is easy to analyze
Resumo:
The presence of microcalcifications in mammograms can be considered as an early indication of breast cancer. A fastfractal block coding method to model the mammograms fordetecting the presence of microcalcifications is presented in this paper. The conventional fractal image coding method takes enormous amount of time during the fractal block encoding.procedure. In the proposed method, the image is divided intoshade and non shade blocks based on the dynamic range, andonly non shade blocks are encoded using the fractal encodingtechnique. Since the number of image blocks is considerablyreduced in the matching domain search pool, a saving of97.996% of the encoding time is obtained as compared to theconventional fractal coding method, for modeling mammograms.The above developed mammograms are used for detectingmicrocalcifications and a diagnostic efficiency of 85.7% isobtained for the 28 mammograms used.
Resumo:
Speech is the primary, most prominent and convenient means of communication in audible language. Through speech, people can express their thoughts, feelings or perceptions by the articulation of words. Human speech is a complex signal which is non stationary in nature. It consists of immensely rich information about the words spoken, accent, attitude of the speaker, expression, intention, sex, emotion as well as style. The main objective of Automatic Speech Recognition (ASR) is to identify whatever people speak by means of computer algorithms. This enables people to communicate with a computer in a natural spoken language. Automatic recognition of speech by machines has been one of the most exciting, significant and challenging areas of research in the field of signal processing over the past five to six decades. Despite the developments and intensive research done in this area, the performance of ASR is still lower than that of speech recognition by humans and is yet to achieve a completely reliable performance level. The main objective of this thesis is to develop an efficient speech recognition system for recognising speaker independent isolated words in Malayalam.
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach
Resumo:
Reading group on diverse topics of interest for the Information: Signals, Images, Systems (ISIS) Research Group of the School of Electronics and Computer Science, University of Southampton.
Resumo:
Esta tesis está dividida en dos partes: en la primera parte se presentan y estudian los procesos telegráficos, los procesos de Poisson con compensador telegráfico y los procesos telegráficos con saltos. El estudio presentado en esta primera parte incluye el cálculo de las distribuciones de cada proceso, las medias y varianzas, así como las funciones generadoras de momentos entre otras propiedades. Utilizando estas propiedades en la segunda parte se estudian los modelos de valoración de opciones basados en procesos telegráficos con saltos. En esta parte se da una descripción de cómo calcular las medidas neutrales al riesgo, se encuentra la condición de no arbitraje en este tipo de modelos y por último se calcula el precio de las opciones Europeas de compra y venta.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·