988 resultados para Signal correlation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the noncollinear local spin-density approximation, we have studied the ground state structure of a parabolically confined quantum wire submitted to an in-plane magnetic field, including both Rashba and Dresselhaus spin-orbit interactions. We have explored a wide range of linear electronic densities in the weak (strong) coupling regimes that appear when the ratio of spin-orbit to confining energy is small (large). These results are used to obtain the conductance of the wire. In the strong coupling limit, the interplay between the applied magnetic field¿irrespective of the in-plane direction, the exchange-correlation energy, and the spin-orbit energy-produces anomalous plateaus in the conductance vs linear density plots that are otherwise absent, or washes out plateaus that appear when the exchange-correlation energy is not taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of different correlation functionals has been tested for alkali metals, Li to Cs, interacting with cluster models simulating different active sites of the Si(111) surface. In all cases, the ab initio Hartree-Fock density has been obtained and used as a starting point. The electronic correlation energy is then introduced as an a posteriori correction to the Hartree-Fock energy using different correlation functionals. By making use of the ionic nature of the interaction and of different dissociation limits we have been able to prove that all functionals tested introduce the right correlation energy, although to a different extent. Hence, correlation functionals appear as an effective and easy way to introduce electronic correlation in the ab initio Hartree-Fock description of the chemisorption bond in complex systems where conventional configuration interaction techniques cannot be used. However, the calculated energies may differ by some tens of eV. Therefore, these methods can be employed to get a qualitative idea of how important correlation effects are, but they have some limitations if accurate binding energies are to be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the potential use of Linear Predictive Coding in speech communication applications. A Modified Block Adaptive Predictive Coder is developed, which reduces the computational burden and complexity without sacrificing the speech quality, as compared to the conventional adaptive predictive coding (APC) system. For this, changes in the evaluation methods have been evolved. This method is as different from the usual APC system in that the difference between the true and the predicted value is not transmitted. This allows the replacement of the high order predictor in the transmitter section of a predictive coding system, by a simple delay unit, which makes the transmitter quite simple. Also, the block length used in the processing of the speech signal is adjusted relative to the pitch period of the signal being processed rather than choosing a constant length as hitherto done by other researchers. The efficiency of the newly proposed coder has been supported with results of computer simulation using real speech data. Three methods for voiced/unvoiced/silent/transition classification have been presented. The first one is based on energy, zerocrossing rate and the periodicity of the waveform. The second method uses normalised correlation coefficient as the main parameter, while the third method utilizes a pitch-dependent correlation factor. The third algorithm which gives the minimum error probability has been chosen in a later chapter to design the modified coder The thesis also presents a comparazive study beh-cm the autocorrelation and the covariance methods used in the evaluaiicn of the predictor parameters. It has been proved that the azztocorrelation method is superior to the covariance method with respect to the filter stabf-it)‘ and also in an SNR sense, though the increase in gain is only small. The Modified Block Adaptive Coder applies a switching from pitch precitzion to spectrum prediction when the speech segment changes from a voiced or transition region to an unvoiced region. The experiments cont;-:ted in coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1 and English phrases. Proposal for a speaker reecgnifion syste: and a phoneme identification system has also been outlized towards the end of the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacings of various subjects generate new field ofstudy and research that help in advancing human knowledge. One of the latest of such fields is Neurotechnology, which is an effective amalgamation of neuroscience, physics, biomedical engineering and computational methods. Neurotechnology provides a platform to interact physicist; neurologist and engineers to break methodology and terminology related barriers. Advancements in Computational capability, wider scope of applications in nonlinear dynamics and chaos in complex systems enhanced study of neurodynamics. However there is a need for an effective dialogue among physicists, neurologists and engineers. Application of computer based technology in the field of medicine through signal and image processing, creation of clinical databases for helping clinicians etc are widely acknowledged. Such synergic effects between widely separated disciplines may help in enhancing the effectiveness of existing diagnostic methods. One of the recent methods in this direction is analysis of electroencephalogram with the help of methods in nonlinear dynamics. This thesis is an effort to understand the functional aspects of human brain by studying electroencephalogram. The algorithms and other related methods developed in the present work can be interfaced with a digital EEG machine to unfold the information hidden in the signal. Ultimately this can be used as a diagnostic tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digitales stochastisches Magnetfeld-Sensorarray Stefan Rohrer Im Rahmen eines mehrjährigen Forschungsprojektes, gefördert von der Deutschen Forschungsgesellschaft (DFG), wurden am Institut für Mikroelektronik (IPM) der Universität Kassel digitale Magnetfeldsensoren mit einer Breite bis zu 1 µm entwickelt. Die vorliegende Dissertation stellt ein aus diesem Forschungsprojekt entstandenes Magnetfeld-Sensorarray vor, das speziell dazu entworfen wurde, um digitale Magnetfelder schnell und auf minimaler Fläche mit einer guten räumlichen und zeitlichen Auflösung zu detektieren. Der noch in einem 1,0µm-CMOS-Prozess gefertigte Test-Chip arbeitet bis zu einer Taktfrequenz von 27 MHz bei einem Sensorabstand von 6,75 µm. Damit ist er das derzeit kleinste und schnellste digitale Magnetfeld-Sensorarray in einem Standard-CMOS-Prozess. Konvertiert auf eine 0,09µm-Technologie können Frequenzen bis 1 GHz erreicht werden bei einem Sensorabstand von unter 1 µm. In der Dissertation werden die wichtigsten Ergebnisse des Projekts detailliert beschrieben. Basis des Sensors ist eine rückgekoppelte Inverter-Anordnung. Als magnetfeldsensitives Element dient ein auf dem Hall-Effekt basierender Doppel-Drain-MAGFET, der das Verhalten der Kippschaltung beeinflusst. Aus den digitalen Ausgangsdaten kann die Stärke und die Polarität des Magnetfelds bestimmt werden. Die Gesamtanordnung bildet einen stochastischen Magnetfeld-Sensor. In der Arbeit wird ein Modell für das Kippverhalten der rückgekoppelten Inverter präsentiert. Die Rauscheinflüsse des Sensors werden analysiert und in einem stochastischen Differentialgleichungssystem modelliert. Die Lösung der stochastischen Differentialgleichung zeigt die Entwicklung der Wahrscheinlichkeitsverteilung des Ausgangssignals über die Zeit und welche Einflussfaktoren die Fehlerwahrscheinlichkeit des Sensors beeinflussen. Sie gibt Hinweise darauf, welche Parameter für das Design und Layout eines stochastischen Sensors zu einem optimalen Ergebnis führen. Die auf den theoretischen Berechnungen basierenden Schaltungen und Layout-Komponenten eines digitalen stochastischen Sensors werden in der Arbeit vorgestellt. Aufgrund der technologisch bedingten Prozesstoleranzen ist für jeden Detektor eine eigene kompensierende Kalibrierung erforderlich. Unterschiedliche Realisierungen dafür werden präsentiert und bewertet. Zur genaueren Modellierung wird ein SPICE-Modell aufgestellt und damit für das Kippverhalten des Sensors eine stochastische Differentialgleichung mit SPICE-bestimmten Koeffizienten hergeleitet. Gegenüber den Standard-Magnetfeldsensoren bietet die stochastische digitale Auswertung den Vorteil einer flexiblen Messung. Man kann wählen zwischen schnellen Messungen bei reduzierter Genauigkeit und einer hohen lokalen Auflösung oder einer hohen Genauigkeit bei der Auswertung langsam veränderlicher Magnetfelder im Bereich von unter 1 mT. Die Arbeit präsentiert die Messergebnisse des Testchips. Die gemessene Empfindlichkeit und die Fehlerwahrscheinlichkeit sowie die optimalen Arbeitspunkte und die Kennliniencharakteristik werden dargestellt. Die relative Empfindlichkeit der MAGFETs beträgt 0,0075/T. Die damit erzielbaren Fehlerwahrscheinlichkeiten werden in der Arbeit aufgelistet. Verglichen mit dem theoretischen Modell zeigt das gemessene Kippverhalten der stochastischen Sensoren eine gute Übereinstimmung. Verschiedene Messungen von analogen und digitalen Magnetfeldern bestätigen die Anwendbarkeit des Sensors für schnelle Magnetfeldmessungen bis 27 MHz auch bei kleinen Magnetfeldern unter 1 mT. Die Messungen der Sensorcharakteristik in Abhängigkeit von der Temperatur zeigen, dass die Empfindlichkeit bei sehr tiefen Temperaturen deutlich steigt aufgrund der Abnahme des Rauschens. Eine Zusammenfassung und ein ausführliches Literaturverzeichnis geben einen Überblick über den Stand der Technik.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wird die Wechselwirkung zwischen einem Photon und einem Elektron im starken Coulombfeld eines Atomkerns am Beispiel des radiativen Elektroneneinfangs beim Stoß hochgeladener Teilchen untersucht. In den letzten Jahren wurde dieser Ladungsaustauschprozess insbesondere für relativistische Ion–Atom–Stöße sowohl experimentell als auch theoretisch ausführlich erforscht. In Zentrum standen dabei haupsächlich die totalen und differentiellen Wirkungsquerschnitte. In neuerer Zeit werden vermehrt Spin– und Polarisationseffekte sowie Korrelationseffekte bei diesen Stoßprozessen diskutiert. Man erwartet, dass diese sehr empfindlich auf relativistische Effekte im Stoß reagieren und man deshalb eine hervorragende Methode zu deren Bestimmung erhält. Darüber hinaus könnten diese Messungen auch indirekt dazu führen, dass man die Polarisation des Ionenstrahls bestimmen kann. Damit würden sich neue experimentelle Möglichkeiten sowohl in der Atom– als auch der Kernphysik ergeben. In dieser Dissertation werden zunächst diese ersten Untersuchungen zu den Spin–, Polarisations– und Korrelationseffekten systematisch zusammengefasst. Die Dichtematrixtheorie liefert hierzu die geeignete Methode. Mit dieser Methode werden dann die allgemeinen Gleichungen für die Zweistufen–Rekombination hergeleitet. In diesem Prozess wird ein Elektron zunächst radiativ in einen angeregten Zustand eingefangen, der dann im zweiten Schritt unter Emission des zweiten (charakteristischen) Photons in den Grundzustand übergeht. Diese Gleichungen können natürlich auf beliebige Mehrstufen– sowie Einstufen–Prozesse erweitert werden. Im direkten Elektroneneinfang in den Grundzustand wurde die ”lineare” Polarisation der Rekombinationsphotonen untersucht. Es wurde gezeigt, dass man damit eine Möglichkeit zur Bestimmung der Polarisation der Teilchen im Eingangskanal des Schwerionenstoßes hat. Rechnungen zur Rekombination bei nackten U92+ Projektilen zeigen z. B., dass die Spinpolarisation der einfallenden Elektronen zu einer Drehung der linearen Polarisation der emittierten Photonen aus der Streuebene heraus führt. Diese Polarisationdrehung kann mit neu entwickelten orts– und polarisationsempfindlichen Festkörperdetektoren gemessen werden. Damit erhält man eine Methode zur Messung der Polarisation der einfallenden Elektronen und des Ionenstrahls. Die K–Schalen–Rekombination ist ein einfaches Beispiel eines Ein–Stufen–Prozesses. Das am besten bekannte Beispiel der Zwei–Stufen–Rekombination ist der Elektroneneinfang in den 2p3/2–Zustand des nackten Ions und anschließendem Lyman–1–Zerfall (2p3/2 ! 1s1/2). Im Rahmen der Dichte–Matrix–Theorie wurden sowohl die Winkelverteilung als auch die lineare Polarisation der charakteristischen Photonen untersucht. Beide (messbaren) Größen werden beträchtlich durch die Interferenz des E1–Kanals (elektrischer Dipol) mit dem viel schwächeren M2–Kanal (magnetischer Quadrupol) beeinflusst. Für die Winkelverteilung des Lyman–1 Zerfalls im Wasserstoff–ähnlichen Uran führt diese E1–M2–Mischung zu einem 30%–Effekt. Die Berücksichtigung dieser Interferenz behebt die bisher vorhandene Diskrepanz von Theorie und Experiment beim Alignment des 2p3/2–Zustands. Neben diesen Ein–Teichen–Querschnitten (Messung des Einfangphotons oder des charakteristischen Photons) wurde auch die Korrelation zwischen den beiden berechnet. Diese Korrelationen sollten in X–X–Koinzidenz–Messungen beobbachtbar sein. Der Schwerpunkt dieser Untersuchungen lag bei der Photon–Photon–Winkelkorrelation, die experimentell am einfachsten zu messen ist. In dieser Arbeit wurden ausführliche Berechnungen der koinzidenten X–X–Winkelverteilungen beim Elektroneneinfang in den 2p3/2–Zustand des nackten Uranions und beim anschließenden Lyman–1–Übergang durchgeführt. Wie bereits erwähnt, hängt die Winkelverteilung des charakteristischen Photons nicht nur vom Winkel des Rekombinationsphotons, sondern auch stark von der Spin–Polarisation der einfallenden Teilchen ab. Damit eröffnet sich eine zweite Möglichkeit zur Messung der Polaristion des einfallenden Ionenstrahls bzw. der einfallenden Elektronen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first relativistic many-electron SCF correlation diagram for a superheavy quasimolecule: Pb - Pb. The discussion shows a large number of quantitative as well as qualitative differences as compared with the known one-electron correlation diagram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A realistic self-consistent charge correlation diagram calculation of the Kr{^2+} - Kr{^2+} system has been performed. We get excellent agreement for the 4(3/2)_u level with an experimentally observed MO level at large distances. Possible reasons for discrepancies between experiment and theory at small distances are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground state (J = 0) electronic correlation energy of the 4-electron Be-sequence is calculated in the Multi-Configuration Dirac-Fock approximation for Z = 4-20. The 4 electrons were distributed over the configurations arising from the 1s, 2s, 2p, 3s, 3p and 3d orbitals. Theoretical values obtained here are in good agreement with experimental correlation energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is found that the electric dipole polarizabilities of neutral atoms correlate very strongly with their first ionization potential within the groups of elements with the same angular momenta of the outermost electrons. As the latter values are known very accurately, this allows a very good (<30%) prediction of various atomic polarizabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlation energies for all isoelectronic sequences of 2 to 20 electrons and Z = 2 to 25 are obtained by taking differences between theoretical total energies of Dirac-Fock calculations and experimental total energies. These are pure relativistic correlation energies because relativistic and QED effects are already taken care of. The theoretical as well as the experimental values are analysed critically in order to get values as accurate as possible. The correlation energies obtained show an essentially consistent behaviour from Z = 2 to 17. For Z > 17 inconsistencies occur indicating errors in the experimental values which become very large for Z > 25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.