954 resultados para Short Loadlength, Fast Algorithms
Resumo:
Benthic processes were measured at a coastal deposition area in the northern Baltic Sea, covering all seasons. The N-2 production rates, 90-400 mu mol N m(-2) d(-1), were highest in autumn-early winter and lowest in spring. Heterotrophic bacterial production peaked unexpectedly late in the year, indicating that in addition to the temperature, the availability of carbon compounds suitable for the heterotrophic bacteria also plays a major role in regulating the denitrification rate. Anaerobic ammonium oxidation (anammox) was measured in spring and autumn and contributed 10% and 15%, respectively, to the total N-2 production. The low percentage did, however, result in a significant error in the total N-2 production rate estimate, calculated using the isotope pairing technique. Anammox must be taken into account in the Gulf of Finland in future sediment nitrogen cycling research.
Resumo:
IEEE 802.16 standards for Wireless Metropolitan Area Networks (WMANs) include a mesh mode of operation for improving the coverage and throughput of the network. In this paper, we consider the problem of routing and centralized scheduling for such networks. We first fix the routing, which reduces the network to a tree. We then present a finite horizon dynamic programming framework. Using it we obtain various scheduling algorithms depending upon the cost function. Next we consider simpler suboptimal algorithms and compare their performances.
Resumo:
Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
Reduction of the execution time of a job through equitable distribution of work load among the processors in a distributed system is the goal of load balancing. Performance of static and dynamic load balancing algorithms for the extended hypercube, is discussed. Threshold algorithms are very well-known algorithms for dynamic load balancing in distributed systems. An extension of the threshold algorithm, called the multilevel threshold algorithm, has been proposed. The hierarchical interconnection network of the extended hypercube is suitable for implementing the proposed algorithm. The new algorithm has been implemented on a transputer-based system and the performance of the algorithm for an extended hypercube is compared with those for mesh and binary hypercube networks
Resumo:
This paper considers a multi-person discrete game with random payoffs. The distribution of the random payoff is unknown to the players and further none of the players know the strategies or the actual moves of other players. A class of absolutely expedient learning algorithms for the game based on a decentralised team of Learning Automata is presented. These algorithms correspond, in some sense, to rational behaviour on the part of the players. All stable stationary points of the algorithm are shown to be Nash equilibria for the game. It is also shown that under some additional constraints on the game, the team will always converge to a Nash equilibrium.
Resumo:
Purpose: Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). Methods: DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Results: Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. Conclusions: We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data. (C) 2011 American Association of Physicists in Medicine. DOI: 10.1118/1.3531572]
Resumo:
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Much of the benefits of deploying unmanned aerial vehicles can be derived from autonomous missions. For such missions, however, sense-and-avoid capability (i.e., the ability to detect potential collisions and avoid them) is a critical requirement. Collision avoidance can be broadly classified into global and local path-planning algorithms, both of which need to be addressed in a successful mission. Whereas global path planning (which is mainly done offline) broadly lays out a path that reaches the goal point, local collision-avoidance algorithms, which are usually fast, reactive, and carried out online, ensure safety of the vehicle from unexpected and unforeseen obstacles/collisions. Even though many techniques for both global and local collision avoidance have been proposed in the recent literature, there is a great interest around the globe to solve this important problem comprehensively and efficiently and such techniques are still evolving. This paper presents a brief overview of a few promising and evolving ideas on collision avoidance for unmanned aerial vehicles, with a preferential bias toward local collision avoidance.
Resumo:
In this paper, a physically based analytical quantum linear threshold voltage model for short channel quad gate MOSFETs is developed. The proposed model, which is suitable for circuit simulation, is based on the analytical solution of 3-D Poisson and 2-D Schrodinger equation. Proposed model is fully validated against the professional numerical device simulator for a wide range of device geometries and also used to analyze the effect of geometry variation on the threshold voltage.
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.
Resumo:
In this paper we address a scheduling problem for minimising total weighted tardiness. The motivation for the paper comes from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real life scenarios like unequal release times, incompatible job families, non-identical job sizes and allowance for job splitting have been considered. A mathematical model taking into account dynamic starting conditions has been developed. Due to the NP-hard nature of the problem, a few heuristic algorithms have been proposed. The performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small size problem instances, and (b) in comparison with `estimated optimal solution' for large size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal solutions (that is, statistically estimated one) in very reasonable computational time.
Resumo:
This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user employs Orthogonal Frequency Division Multiplexing (OFDM). We specifically consider the scenario when the channel between the primary and a secondary user is frequency selective. We develop cooperative sequential detection algorithms based on energy detectors. We modify the detectors to mitigate the effects of some common model uncertainties such as timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. The performance of the proposed algorithms are studied via simulations. We show that the performance of the energy detector is not affected by the frequency selective channel. We also provide a theoretical analysis for some of our algorithms.
Resumo:
Factors contributing to the variations in the Cu(I)-Cu(I) distances in two clusters with identical ligand and coordination geometries have been analyzed. While the hexamer, 4, exhibits metal-metal distances in the range 2.81-3.25 Angstrom, shorter contacts are found in the corresponding tetramer, 3 (2.60-2.77 Angstrom). EHT calculations reveal relatively little attractive interactions in the corresponding Cu-4(4+) and Cu-6(6+) cores. Introduction of the ligands lowers the reduced overlap populations between the metals further. MNDO calculations with model electrophiles have been carried out to determine the bite angle requirements of the ligands. These are satisfactorily met in the structures of both 3 and 4. The key geometric feature distinguishing 3 and 4 is the Cu-S-Cu angle involving the bridging S- unit. In 4, the corresponding angles are about 90 degrees, while the values in 3 are smaller (70-73 degrees). Wider angles are computed to be energetically favored and are characterized by an open three-center bond and a long Cu-Cu distance. The bridging angles are suggested to be primarily constrained by the mode of oligomerization. Implications of these results for the stability and reactivity of these clusters and for short metal-metal distances in d(10) systems in general are discussed.