977 resultados para Series online
Resumo:
This paper presents a new application of two dimensional Principal Component Analysis (2DPCA) to the problem of online character recognition in Tamil Script. A novel set of features employing polynomial fits and quartiles in combination with conventional features are derived for each sample point of the Tamil character obtained after smoothing and resampling. These are stacked to form a matrix, using which a covariance matrix is constructed. A subset of the eigenvectors of the covariance matrix is employed to get the features in the reduced sub space. Each character is modeled as a separate subspace and a modified form of the Mahalanobis distance is derived to classify a given test character. Results indicate that the recognition accuracy using the 2DPCA scheme shows an approximate 3% improvement over the conventional PCA technique.
Resumo:
This paper introduces a scheme for classification of online handwritten characters based on polynomial regression of the sampled points of the sub-strokes in a character. The segmentation is done based on the velocity profile of the written character and this requires a smoothening of the velocity profile. We propose a novel scheme for smoothening the velocity profile curve and identification of the critical points to segment the character. We also porpose another method for segmentation based on the human eye perception. We then extract two sets of features for recognition of handwritten characters. Each sub-stroke is a simple curve, a part of the character, and is represented by the distance measure of each point from the first point. This forms the first set of feature vector for each character. The second feature vector are the coeficients obtained from the B-splines fitted to the control knots obtained from the segmentation algorithm. The feature vector is fed to the SVM classifier and it indicates an efficiency of 68% using the polynomial regression technique and 74% using the spline fitting method.
Resumo:
Segmental dynamic time warping (DTW) has been demonstrated to be a useful technique for finding acoustic similarity scores between segments of two speech utterances. Due to its high computational requirements, it had to be computed in an offline manner, limiting the applications of the technique. In this paper, we present results of parallelization of this task by distributing the workload in either a static or dynamic way on an 8-processor cluster and discuss the trade-offs among different distribution schemes. We show that online unsupervised pattern discovery using segmental DTW is plausible with as low as 8 processors. This brings the task within reach of today's general purpose multi-core servers. We also show results on a 32-processor system, and discuss factors affecting scalability of our methods.
Resumo:
We present a fractal coding method to recognize online handwritten Tamil characters and propose a novel technique to increase the efficiency in terms of time while coding and decoding. This technique exploits the redundancy in data, thereby achieving better compression and usage of lesser memory. It also reduces the encoding time and causes little distortion during reconstruction. Experiments have been conducted to use these fractal codes to classify the online handwritten Tamil characters from the IWFHR 2006 competition dataset. In one approach, we use fractal coding and decoding process. A recognition accuracy of 90% has been achieved by using DTW for distortion evaluation during classification and encoding processes as compared to 78% using nearest neighbor classifier. In other experiments, we use the fractal code, fractal dimensions and features derived from fractal codes as features in separate classifiers. While the fractal code is successful as a feature, the other two features are not able to capture the wide within-class variations.
Resumo:
In this paper, we propose a novel heuristic approach to segment recognizable symbols from online Kannada word data and perform recognition of the entire word. Two different estimates of first derivative are extracted from the preprocessed stroke groups and used as features for classification. Estimate 2 proved better resulting in 88% accuracy, which is 3% more than that achieved with estimate 1. Classification is performed by statistical dynamic space warping (SDSW) classifier which uses X, Y co-ordinates and their first derivatives as features. Classifier is trained with data from 40 writers. 295 classes are handled covering Kannada aksharas, with Kannada numerals, Indo-Arabic numerals, punctuations and other special symbols like $ and #. Classification accuracies obtained are 88% at the akshara level and 80% at the word level, which shows the scope for further improvement in segmentation algorithm
Resumo:
In this paper, we present an unrestricted Kannada online handwritten character recognizer which is viable for real time applications. It handles Kannada and Indo-Arabic numerals, punctuation marks and special symbols like $, &, # etc, apart from all the aksharas of the Kannada script. The dataset used has handwriting of 69 people from four different locations, making the recognition writer independent. It was found that for the DTW classifier, using smoothed first derivatives as features, enhanced the performance to 89% as compared to preprocessed co-ordinates which gave 85%, but was too inefficient in terms of time. To overcome this, we used Statistical Dynamic Time Warping (SDTW) and achieved 46 times faster classification with comparable accuracy i.e. 88%, making it fast enough for practical applications. The accuracies reported are raw symbol recognition results from the classifier. Thus, there is good scope of improvement in actual applications. Where domain constraints such as fixed vocabulary, language models and post processing can be employed. A working demo is also available on tablet PC for recognition of Kannada words.
Resumo:
An extension of Rizk's analysis to cover any type of switching is presented for calculating the residual current and recovery voltage in a singlephase switched transmission system. Equations for the determination of the current and voltage are shown, and the method has been used for the analysis of a series- and shunt-compensated line.Three possible switching methods for the effective control of the recovery voltage and residual current are discussed: normal switching, switching at the ends of the line and switching of the series capacitors.
Resumo:
The effectiveness of series capacitors used with long distance transmission lines in improving system stability is analyzed. Compensation efficiency is defined as the effectiveness of series capacitors. The influence of various factors on compensation efficiency such as capacitor location, line length, and degree of series compensation is investigated. Proper use of shunt reactors with series capacitors, in addition to limiting power frequency over- voltages, increases the maximum power transfer. Analytical expressions are included to aid in the calculation of compensation efficiency for a few typical cases. Curves are also presented indicating the critical value of shunt Mvar required for various degrees of series compensation and line lengths.
Resumo:
The radiation resistance of off-set series slots has been calculated for microstrip lines using the method proposed by Breithaupt for strip lines. A suitable transformation is made to allow for the difference in structure. Curves relating the slot resistance to the microstrip length, width and off-set distance have been obtained. Microstrip slot antenna arrays are becoming important in applications where size and weight are of significance. The radiation resistance is a very significant parameter is the design of such arrays. Oliner first calculated the radiation conductance of centered series slots in strip transmission lines and that analysis was extended by Breithaupt to the off-set series slots in stripline. The radiation resistance of off-set series slots in microstrip lines is calculated in this paper and data are obtained for different slot lengths, slot widths and off-set values. An example of the use of these data in array antenna design in shown.
Resumo:
Handling unbalanced and non-linear loads in a three-phase AC power supply has always been a difficult issue. This has been addressed in the literature by either using fast controllers in the fundamental rotating reference frame or using separate controllers in reference frames specific to the harmonics. In the former case, the controller needs to be fast and in the latter case, besides the need for many controllers, negative-sequence components need to be extracted from the measured signal. This study proposes a control scheme for harmonic and unbalance compensation of a three-phase uninterruptible power supply wherein the problems mentioned above are addressed. The control takes place in the fundamental positive-sequence reference frame using only a set of feedback and feed-forward compensators. The harmonic components are extracted by a process of frame transformations and used as feed-forward compensation terms in the positive-sequence fundamental reference frame. This study uses a method wherein the measured signal itself is used for fundamental negative-sequence compensation. As the feed-forward compensator handles the high-bandwidth components, the feedback compensator can be a simple low-bandwidth one. This control algorithm is explained and validated experimentally.
Resumo:
The data obtained in the earlier parts of this series for the donor and acceptor end parameters of N-H. O and O-H. O hydrogen bonds have been utilised to obtain a qualitative working criterion to classify the hydrogen bonds into three categories: “very good” (VG), “moderately good” (MG) and weak (W). The general distribution curves for all the four parameters are found to be nearly of the Gaussian type. Assuming that the VG hydrogen bonds lie between 0 and ± la, MG hydrogen bonds between ± 1s̀ and ± 2s̀, W hydrogen bonds beyond ± 2s̀ (where s̀ is the standard deviation), suitable cut-off limits for classifying the hydrogen bonds in the three categories have been derived. These limits are used to get VG and MG ranges for the four parameters 1 and θ (at the donor end) and ± and ± (at the acceptor end). The qualitative strength of a hydrogen bond is decided by the cumulative application of the criteria to all the four parameters. The criterion has been further applied to some practical examples in conformational studies such as α-helix and can be used for obtaining suitable location of hydrogen atoms to form good hydrogen bonds. An empirical approach to the energy of hydrogen bonds in the three categories has also been presented.