971 resultados para Sequential Monte Carlo methods
Resumo:
The vibrations of H3O2- and D3O2- are investigated using diffusion Monte Carlo (DMC) and vibrational configuration-interaction approaches, as implemented in the program MULTIMODE. These studies use the potential surface recently developed by Huang [ J. Am. Chem. Soc. 126, 5042 (2004)]. The focus of this work is on the vibrational ground state and fundamentals which occur between 100 and 3700 cm(-1). In most cases, excellent agreement is obtained between the fundamental frequencies calculated by the two approaches. This serves to demonstrate the power of both methods for treating this very anharmonic system. Based on the results of the MULTIMODE and DMC treatments, the extent and nature of the couplings in H3O2- and D3O2- are investigated. (C) 2005 American Institute of Physics.
Resumo:
The organization of non-crystalline polymeric materials at a local level, namely on a spatial scale between a few and 100 a, is still unclear in many respects. The determination of the local structure in terms of the configuration and conformation of the polymer chain and of the packing characteristics of the chain in the bulk material represents a challenging problem. Data from wide-angle diffraction experiments are very difficult to interpret due to the very large amount of information that they carry, that is the large number of correlations present in the diffraction patterns.We describe new approaches that permit a detailed analysis of the complex neutron diffraction patterns characterizing polymer melts and glasses. The coupling of different computer modelling strategies with neutron scattering data over a wide Q range allows the extraction of detailed quantitative information on the structural arrangements of the materials of interest. Proceeding from modelling routes as diverse as force field calculations, single-chain modelling and reverse Monte Carlo, we show the successes and pitfalls of each approach in describing model systems, which illustrate the need to attack the data analysis problem simultaneously from several fronts.
Resumo:
Determination of the local structure of a polymer glass by scattering methods is complex due to the number of spatial and orientational correlations, both from within the polymer chain (intrachain) and between neighbouring chains (interchain), from which the scattering arises. Recently considerable advances have been made in the structural analysis of relatively simple polymers such as poly(ethylene) through the use of broad Q neutron scattering data tightly coupled to atomistic modelling procedures. This paper presents the results of an investigation into the use of these procedures for the analysis of the local structure of a-PMMA which is chemically more complex with a much greater number of intrachain structural parameters. We have utilised high quality neutron scattering data obtained using SANDALS at ISIS coupled with computer models representing both the single chain and bulk polymer system. Several different modelling approaches have been explored which encompass such techniques as Reverse Monte Carlo refinement and energy minimisation and their relative merits and successes are discussed. These different approaches highlight structural parameters which any realistic model of glassy atactic PMMA must replicate.
Resumo:
We present, pedagogically, the Bayesian approach to composed error models under alternative, hierarchical characterizations; demonstrate, briefly, the Bayesian approach to model comparison using recent advances in Markov Chain Monte Carlo (MCMC) methods; and illustrate, empirically, the value of these techniques to natural resource economics and coastal fisheries management, in particular. The Bayesian approach to fisheries efficiency analysis is interesting for at least three reasons. First, it is a robust and highly flexible alternative to commonly applied, frequentist procedures, which dominate the literature. Second,the Bayesian approach is extremely simple to implement, requiring only a modest addition to most natural-resource economist tool-kits. Third, despite its attractions, applications of Bayesian methodology in coastal fisheries management are few.
Resumo:
The steadily accumulating literature on technical efficiency in fisheries attests to the importance of efficiency as an indicator of fleet condition and as an object of management concern. In this paper, we extend previous work by presenting a Bayesian hierarchical approach that yields both efficiency estimates and, as a byproduct of the estimation algorithm, probabilistic rankings of the relative technical efficiencies of fishing boats. The estimation algorithm is based on recent advances in Markov Chain Monte Carlo (MCMC) methods— Gibbs sampling, in particular—which have not been widely used in fisheries economics. We apply the method to a sample of 10,865 boat trips in the US Pacific hake (or whiting) fishery during 1987–2003. We uncover systematic differences between efficiency rankings based on sample mean efficiency estimates and those that exploit the full posterior distributions of boat efficiencies to estimate the probability that a given boat has the highest true mean efficiency.
Resumo:
The Homeric epics are among the greatest masterpieces of literature, but when they were produced is not known with certainty. Here we apply evolutionary-linguistic phylogenetic statistical methods to differences in Homeric, Modern Greek and ancient Hittite vocabulary items to estimate a date of approximately 710–760 BCE for these great works. Our analysis compared a common set of vocabulary items among the three pairs of languages, recording for each item whether the words in the two languages were cognate – derived from a shared ancestral word – or not. We then used a likelihood-based Markov chain Monte Carlo procedure to estimate the most probable times in years separating these languages given the percentage of words they shared, combined with knowledge of the rates at which different words change. Our date for the epics is in close agreement with historians' and classicists' beliefs derived from historical and archaeological sources.
Resumo:
The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from a canonical ensemble. The HMC method is based on classical molecular dynamics simulations combined with a Metropolis acceptance criterion and a momentum resampling step. While the HMC method completely resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment step. This property seems desirable for keeping some of the dynamic information throughout the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is observed. In this paper, we describe a method to achieve very low rejection rates by using a modified energy, which is preserved to high-order along molecular dynamics trajectories. The modified energy is based on backward error results for symplectic time-stepping methods. The proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well as NPT ensemble simulations.
Resumo:
Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.
Resumo:
The European Centre for Medium-range Weather Forecast (ECMWF) provides an aerosol re-analysis starting from year 2003 for the Monitoring Atmospheric Composition and Climate (MACC) project. The re-analysis assimilates total aerosol optical depth retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) to correct for model departures from observed aerosols. The reanalysis therefore combines satellite retrievals with the full spatial coverage of a numerical model. Re-analysed products are used here to estimate the shortwave direct and first indirect radiative forcing of anthropogenic aerosols over the period 2003–2010, using methods previously applied to satellite retrievals of aerosols and clouds. The best estimate of globally-averaged, all-sky direct radiative forcing is −0.7±0.3Wm−2. The standard deviation is obtained by a Monte-Carlo analysis of uncertainties, which accounts for uncertainties in the aerosol anthropogenic fraction, aerosol absorption, and cloudy-sky effects. Further accounting for differences between the present-day natural and pre-industrial aerosols provides a direct radiative forcing estimate of −0.4±0.3Wm−2. The best estimate of globally-averaged, all-sky first indirect radiative forcing is −0.6±0.4Wm−2. Its standard deviation accounts for uncertainties in the aerosol anthropogenic fraction, and in cloud albedo and cloud droplet number concentration susceptibilities to aerosol changes. The distribution of first indirect radiative forcing is asymmetric and is bounded by −0.1 and −2.0Wm−2. In order to decrease uncertainty ranges, better observational constraints on aerosol absorption and sensitivity of cloud droplet number concentrations to aerosol changes are required.
Resumo:
We compare linear autoregressive (AR) models and self-exciting threshold autoregressive (SETAR) models in terms of their point forecast performance, and their ability to characterize the uncertainty surrounding those forecasts, i.e. interval or density forecasts. A two-regime SETAR process is used as the data-generating process in an extensive set of Monte Carlo simulations, and we consider the discriminatory power of recently developed methods of forecast evaluation for different degrees of non-linearity. We find that the interval and density evaluation methods are unlikely to show the linear model to be deficient on samples of the size typical for macroeconomic data
Resumo:
Although the sunspot-number series have existed since the mid-19th century, they are still the subject of intense debate, with the largest uncertainty being related to the "calibration" of the visual acuity of individual observers in the past. Daisy-chain regression methods are applied to inter-calibrate the observers which may lead to significant bias and error accumulation. Here we present a novel method to calibrate the visual acuity of the key observers to the reference data set of Royal Greenwich Observatory sunspot groups for the period 1900-1976, using the statistics of the active-day fraction. For each observer we independently evaluate their observational thresholds [S_S] defined such that the observer is assumed to miss all of the groups with an area smaller than S_S and report all the groups larger than S_S. Next, using a Monte-Carlo method we construct, from the reference data set, a correction matrix for each observer. The correction matrices are significantly non-linear and cannot be approximated by a linear regression or proportionality. We emphasize that corrections based on a linear proportionality between annually averaged data lead to serious biases and distortions of the data. The correction matrices are applied to the original sunspot group records for each day, and finally the composite corrected series is produced for the period since 1748. The corrected series displays secular minima around 1800 (Dalton minimum) and 1900 (Gleissberg minimum), as well as the Modern grand maximum of activity in the second half of the 20th century. The uniqueness of the grand maximum is confirmed for the last 250 years. It is shown that the adoption of a linear relationship between the data of Wolf and Wolfer results in grossly inflated group numbers in the 18th and 19th centuries in some reconstructions.
Resumo:
A truly variance-minimizing filter is introduced and its per for mance is demonstrated with the Korteweg– DeV ries (KdV) equation and with a multilayer quasigeostrophic model of the ocean area around South Africa. It is recalled that Kalman-like filters are not variance minimizing for nonlinear model dynamics and that four - dimensional variational data assimilation (4DV AR)-like methods relying on per fect model dynamics have dif- ficulty with providing error estimates. The new method does not have these drawbacks. In fact, it combines advantages from both methods in that it does provide error estimates while automatically having balanced states after analysis, without extra computations. It is based on ensemble or Monte Carlo integrations to simulate the probability density of the model evolution. When obser vations are available, the so-called importance resampling algorithm is applied. From Bayes’ s theorem it follows that each ensemble member receives a new weight dependent on its ‘ ‘distance’ ’ t o the obser vations. Because the weights are strongly var ying, a resampling of the ensemble is necessar y. This resampling is done such that members with high weights are duplicated according to their weights, while low-weight members are largely ignored. In passing, it is noted that data assimilation is not an inverse problem by nature, although it can be for mulated that way . Also, it is shown that the posterior variance can be larger than the prior if the usual Gaussian framework is set aside. However , i n the examples presented here, the entropy of the probability densities is decreasing. The application to the ocean area around South Africa, gover ned by strongly nonlinear dynamics, shows that the method is working satisfactorily . The strong and weak points of the method are discussed and possible improvements are proposed.
Resumo:
We studied superclusters of galaxies in a volume-limited sample extracted from the Sloan Digital Sky Survey Data Release 7 and from mock catalogues based on a semi-analytical model of galaxy evolution in the Millennium Simulation. A density field method was applied to a sample of galaxies brighter than M(r) = -21+5 log h(100) to identify superclusters, taking into account selection and boundary effects. In order to evaluate the influence of the threshold density, we have chosen two thresholds: the first maximizes the number of objects (D1) and the second constrains the maximum supercluster size to similar to 120 h(-1) Mpc (D2). We have performed a morphological analysis, using Minkowski Functionals, based on a parameter, which increases monotonically from filaments to pancakes. An anticorrelation was found between supercluster richness (and total luminosity or size) and the morphological parameter, indicating that filamentary structures tend to be richer, larger and more luminous than pancakes in both observed and mock catalogues. We have also used the mock samples to compare supercluster morphologies identified in position and velocity spaces, concluding that our morphological classification is not biased by the peculiar velocities. Monte Carlo simulations designed to investigate the reliability of our results with respect to random fluctuations show that these results are robust. Our analysis indicates that filaments and pancakes present different luminosity and size distributions.
Resumo:
In this paper, we compare the performance of two statistical approaches for the analysis of data obtained from the social research area. In the first approach, we use normal models with joint regression modelling for the mean and for the variance heterogeneity. In the second approach, we use hierarchical models. In the first case, individual and social variables are included in the regression modelling for the mean and for the variance, as explanatory variables, while in the second case, the variance at level 1 of the hierarchical model depends on the individuals (age of the individuals), and in the level 2 of the hierarchical model, the variance is assumed to change according to socioeconomic stratum. Applying these methodologies, we analyze a Colombian tallness data set to find differences that can be explained by socioeconomic conditions. We also present some theoretical and empirical results concerning the two models. From this comparative study, we conclude that it is better to jointly modelling the mean and variance heterogeneity in all cases. We also observe that the convergence of the Gibbs sampling chain used in the Markov Chain Monte Carlo method for the jointly modeling the mean and variance heterogeneity is quickly achieved.
Resumo:
In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different ""frailties"" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.