944 resultados para Semantic fields
Resumo:
Hydroxyapatite is a naturally occurring mineral found in human bones and teeth. Its chemical formula is: Ca10(PO4)6(OH)2. In this project hydroxyapatite nanoparticles were doped with iron or europium to give the particles magnetic or fluorescent properties, respectively. The magnetic and fluorescent responses of these particles under externally applied magnetic fields has not yet been fully characterized.
Resumo:
BACKGROUND: Little is known about the population's exposure to radio frequency electromagnetic fields (RF-EMF) in industrialized countries. OBJECTIVES: To examine levels of exposure and the importance of different RF-EMF sources and settings in a sample of volunteers living in a Swiss city. METHODS: RF-EMF exposure of 166 volunteers from Basel, Switzerland, was measured with personal exposure meters (exposimeters). Participants carried an exposimeter for 1 week (two separate weeks in 32 participants) and completed an activity diary. Mean values were calculated using the robust regression on order statistics (ROS) method. RESULTS: Mean weekly exposure to all RF-EMF sources was 0.13 mW/m(2) (0.22 V/m) (range of individual means 0.014-0.881 mW/m(2)). Exposure was mainly due to mobile phone base stations (32.0%), mobile phone handsets (29.1%) and digital enhanced cordless telecommunications (DECT) phones (22.7%). Persons owning a DECT phone (total mean 0.15 mW/m(2)) or mobile phone (0.14 mW/m(2)) were exposed more than those not owning a DECT or mobile phone (0.10 mW/m(2)). Mean values were highest in trains (1.16 mW/m(2)), airports (0.74 mW/m(2)) and tramways or buses (0.36 mW/m(2)), and higher during daytime (0.16 mW/m(2)) than nighttime (0.08 mW/m(2)). The Spearman correlation coefficient between mean exposure in the first and second week was 0.61. CONCLUSIONS: Exposure to RF-EMF varied considerably between persons and locations but was fairly consistent within persons. Mobile phone handsets, mobile phone base stations and cordless phones were important sources of exposure in urban Switzerland.
Resumo:
Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).
Resumo:
Complementary to automatic extraction processes, Virtual Reality technologies provide an adequate framework to integrate human perception in the exploration of large data sets. In such multisensory system, thanks to intuitive interactions, a user can take advantage of all his perceptual abilities in the exploration task. In this context the haptic perception, coupled to visual rendering, has been investigated for the last two decades, with significant achievements. In this paper, we present a survey related to exploitation of the haptic feedback in exploration of large data sets. For each haptic technique introduced, we describe its principles and its effectiveness.
Resumo:
27-Channel EEG potential map series were recorded from 12 normals with closed and open eyes. Intracerebral dipole model source locations in the frequency domain were computed. Eye opening (visual input) caused centralization (convergence and elevation) of the source locations of the seven frequency bands, indicative of generalized activity; especially, there was clear anteriorization of α-2 (10.5–12 Hz) and β-2 (18.5–21 Hz) sources (α-2 also to the left). Complexity of the map series' trajectories in state space (assessed by Global Dimensional Complexity and Global OMEGA Complexity) increased significantly with eye opening, indicative of more independent, parallel, active processes. Contrary to PET and fMRI, these results suggest that brain activity is more distributed and independent during visual input than after eye closing (when it is more localized and more posterior).
Resumo:
Brian electric activity is viewed as sequences of momentary maps of potential distribution. Frequency-domain source modeling, estimation of the complexity of the trajectory of the mapped brain field distributions in state space, and microstate parsing were used as analysis tools. Input-presentation as well as task-free (spontaneous thought) data collection paradigms were employed. We found: Alpha EEG field strength is more affected by visualizing mentation than by abstract mentation, both input-driven as well as self-generated. There are different neuronal populations and brain locations of the electric generators for different temporal frequencies of the brain field. Different alpha frequencies execute different brain functions as revealed by canonical correlations with mentation profiles. Different modes of mentation engage the same temporal frequencies at different brain locations. The basic structure of alpha electric fields implies inhomogeneity over time — alpha consists of concatenated global microstates in the sub-second range, characterized by quasi-stable field topographies, and rapid transitions between the microstates. In general, brain activity is strongly discontinuous, indicating that parsing into field landscape-defined microstates is appropriate. Different modes of spontaneous and induced mentation are associated with different brain electric microstates; these are proposed as candidates for psychophysiological ``atoms of thought''.
Resumo:
Continuous advancements in technology have led to increasingly comprehensive and distributed product development processes while in pursuit of improved products at reduced costs. Information associated with these products is ever changing, and structured frameworks have become integral to managing such fluid information. Ontologies and the Semantic Web have emerged as key alternatives for capturing product knowledge in both a human-readable and computable manner. The primary and conclusive focus of this research is to characterize relationships formed within methodically developed distributed design knowledge frameworks to ultimately provide a pervasive real-time awareness in distributed design processes. Utilizing formal logics in the form of the Semantic Web’s OWL and SWRL, causal relationships are expressed to guide and facilitate knowledge acquisition as well as identify contradictions between knowledge in a knowledge base. To improve the efficiency during both the development and operational phases of these “intelligent” frameworks, a semantic relatedness algorithm is designed specifically to identify and rank underlying relationships within product development processes. After reviewing several semantic relatedness measures, three techniques, including a novel meronomic technique, are combined to create AIERO, the Algorithm for Identifying Engineering Relationships in Ontologies. In determining its applicability and accuracy, AIERO was applied to three separate, independently developed ontologies. The results indicate AIERO is capable of consistently returning relatedness values one would intuitively expect. To assess the effectiveness of AIERO in exposing underlying causal relationships across product development platforms, a case study involving the development of an industry-inspired printed circuit board (PCB) is presented. After instantiating the PCB knowledge base and developing an initial set of rules, FIDOE, the Framework for Intelligent Distributed Ontologies in Engineering, was employed to identify additional causal relationships through extensional relatedness measurements. In a conclusive PCB redesign, the resulting “intelligent” framework demonstrates its ability to pass values between instances, identify inconsistencies amongst instantiated knowledge, and identify conflicting values within product development frameworks. The results highlight how the introduced semantic methods can enhance the current knowledge acquisition, knowledge management, and knowledge validation capabilities of traditional knowledge bases.
Resumo:
Integrating physical objects (smart objects) and enterprise IT systems is still a labor intensive, mainly manual task done by domain experts. On one hand, enterprise IT backend systems are based on service oriented architectures (SOA) and driven by business rule engines or business process execution engines. Smart objects on the other hand are often programmed at very low levels. In this paper we describe an approach that makes the integration of smart objects with such backends systems easier. We introduce semantic endpoint descriptions based on Linked USDL. Furthermore, we show how different communication patterns can be integrated into these endpoint descriptions. The strength of our endpoint descriptions is that they can be used to automatically create REST or SOAP endpoints for enterprise systems, even if which they are not able to talk to the smart objects directly. We evaluate our proposed solution with CoAP, UDP and 6LoWPAN, as we anticipate the industry converge towards these standards. Nonetheless, our approach also allows easy integration with backend systems, even if no standardized protocol is used.
Resumo:
Internet of Things based systems are anticipated to gain widespread use in industrial applications. Standardization efforts, like 6L0WPAN and the Constrained Application Protocol (CoAP) have made the integration of wireless sensor nodes possible using Internet technology and web-like access to data (RESTful service access). While there are still some open issues, the interoperability problem in the lower layers can now be considered solved from an enterprise software vendors' point of view. One possible next step towards integration of real-world objects into enterprise systems and solving the corresponding interoperability problems at higher levels is to use semantic web technologies. We introduce an abstraction of real-world objects, called Semantic Physical Business Entities (SPBE), using Linked Data principles. We show that this abstraction nicely fits into enterprise systems, as SPBEs allow a business object centric view on real-world objects, instead of a pure device centric view. The interdependencies between how currently services in an enterprise system are used and how this can be done in a semantic real-world aware enterprise system are outlined, arguing for the need of semantic services and semantic knowledge repositories. We introduce a lightweight query language, which we use to perform a quantitative analysis of our approach to demonstrate its feasibility.