920 resultados para Self-Validating Numerical Methods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stress recovery techniques have been an active research topic in the last few years since, in 1987, Zienkiewicz and Zhu proposed a procedure called Superconvergent Patch Recovery (SPR). This procedure is a last-squares fit of stresses at super-convergent points over patches of elements and it leads to enhanced stress fields that can be used for evaluating finite element discretization errors. In subsequent years, numerous improved forms of this procedure have been proposed attempting to add equilibrium constraints to improve its performances. Later, another superconvergent technique, called Recovery by Equilibrium in Patches (REP), has been proposed. In this case the idea is to impose equilibrium in a weak form over patches and solve the resultant equations by a last-square scheme. In recent years another procedure, based on minimization of complementary energy, called Recovery by Compatibility in Patches (RCP) has been proposed in. This procedure, in many ways, can be seen as the dual form of REP as it substantially imposes compatibility in a weak form among a set of self-equilibrated stress fields. In this thesis a new insight in RCP is presented and the procedure is improved aiming at obtaining convergent second order derivatives of the stress resultants. In order to achieve this result, two different strategies and their combination have been tested. The first one is to consider larger patches in the spirit of what proposed in [4] and the second one is to perform a second recovery on the recovered stresses. Some numerical tests in plane stress conditions are presented, showing the effectiveness of these procedures. Afterwards, a new recovery technique called Last Square Displacements (LSD) is introduced. This new procedure is based on last square interpolation of nodal displacements resulting from the finite element solution. In fact, it has been observed that the major part of the error affecting stress resultants is introduced when shape functions are derived in order to obtain strains components from displacements. This procedure shows to be ultraconvergent and is extremely cost effective, as it needs in input only nodal displacements directly coming from finite element solution, avoiding any other post-processing in order to obtain stress resultants using the traditional method. Numerical tests in plane stress conditions are than presented showing that the procedure is ultraconvergent and leads to convergent first and second order derivatives of stress resultants. In the end, transverse stress profiles reconstruction using First-order Shear Deformation Theory for laminated plates and three dimensional equilibrium equations is presented. It can be seen that accuracy of this reconstruction depends on accuracy of first and second derivatives of stress resultants, which is not guaranteed by most of available low order plate finite elements. RCP and LSD procedures are than used to compute convergent first and second order derivatives of stress resultants ensuring convergence of reconstructed transverse shear and normal stress profiles respectively. Numerical tests are presented and discussed showing the effectiveness of both procedures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents new methods to simulate systems with hydrodynamic and electrostatic interactions. Part 1 is devoted to computer simulations of Brownian particles with hydrodynamic interactions. The main influence of the solvent on the dynamics of Brownian particles is that it mediates hydrodynamic interactions. In the method, this is simulated by numerical solution of the Navier--Stokes equation on a lattice. To this end, the Lattice--Boltzmann method is used, namely its D3Q19 version. This model is capable to simulate compressible flow. It gives us the advantage to treat dense systems, in particular away from thermal equilibrium. The Lattice--Boltzmann equation is coupled to the particles via a friction force. In addition to this force, acting on {it point} particles, we construct another coupling force, which comes from the pressure tensor. The coupling is purely local, i.~e. the algorithm scales linearly with the total number of particles. In order to be able to map the physical properties of the Lattice--Boltzmann fluid onto a Molecular Dynamics (MD) fluid, the case of an almost incompressible flow is considered. The Fluctuation--Dissipation theorem for the hybrid coupling is analyzed, and a geometric interpretation of the friction coefficient in terms of a Stokes radius is given. Part 2 is devoted to the simulation of charged particles. We present a novel method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. This algorithm scales linearly, too. We focus on the Molecular Dynamics version of the method and show that it is intimately related to the Car--Parrinello approach, while being equivalent to solving Maxwell's equations with freely adjustable speed of light. The Lagrangian formulation of the coupled particles--fields system is derived. The quasi--Hamiltonian dynamics of the system is studied in great detail. For implementation on the computer, the equations of motion are discretized with respect to both space and time. The discretization of the electromagnetic fields on a lattice, as well as the interpolation of the particle charges on the lattice is given. The algorithm is as local as possible: Only nearest neighbors sites of the lattice are interacting with a charged particle. Unphysical self--energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green's function. The method allows easy parallelization using standard domain decomposition. Some benchmarking results of the algorithm are presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this thesis is the application of an opto-electronic numerical simulation to heterojunction silicon solar cells featuring an all back contact architecture (Interdigitated Back Contact Hetero-Junction IBC-HJ). The studied structure exhibits both metal contacts, emitter and base, at the back surface of the cell with the objective to reduce the optical losses due to the shadowing by front contact of conventional photovoltaic devices. Overall, IBC-HJ are promising low-cost alternatives to monocrystalline wafer-based solar cells featuring front and back contact schemes, in fact, for IBC-HJ the high concentration doping diffusions are replaced by low-temperature deposition processes of thin amorphous silicon layers. Furthermore, another advantage of IBC solar cells with reference to conventional architectures is the possibility to enable a low-cost assembling of photovoltaic modules, being all contacts on the same side. A preliminary extensive literature survey has been helpful to highlight the specific critical aspects of IBC-HJ solar cells as well as the state-of-the-art of their modeling, processing and performance of practical devices. In order to perform the analysis of IBC-HJ devices, a two-dimensional (2-D) numerical simulation flow has been set up. A commercial device simulator based on finite-difference method to solve numerically the whole set of equations governing the electrical transport in semiconductor materials (Sentuarus Device by Synopsys) has been adopted. The first activity carried out during this work has been the definition of a 2-D geometry corresponding to the simulation domain and the specification of the electrical and optical properties of materials. In order to calculate the main figures of merit of the investigated solar cells, the spatially resolved photon absorption rate map has been calculated by means of an optical simulator. Optical simulations have been performed by using two different methods depending upon the geometrical features of the front interface of the solar cell: the transfer matrix method (TMM) and the raytracing (RT). The first method allows to model light prop-agation by plane waves within one-dimensional spatial domains under the assumption of devices exhibiting stacks of parallel layers with planar interfaces. In addition, TMM is suitable for the simulation of thin multi-layer anti reflection coating layers for the reduction of the amount of reflected light at the front interface. Raytracing is required for three-dimensional optical simulations of upright pyramidal textured surfaces which are widely adopted to significantly reduce the reflection at the front surface. The optical generation profiles are interpolated onto the electrical grid adopted by the device simulator which solves the carriers transport equations coupled with Poisson and continuity equations in a self-consistent way. The main figures of merit are calculated by means of a postprocessing of the output data from device simulation. After the validation of the simulation methodology by means of comparison of the simulation result with literature data, the ultimate efficiency of the IBC-HJ architecture has been calculated. By accounting for all optical losses, IBC-HJ solar cells result in a theoretical maximum efficiency above 23.5% (without texturing at front interface) higher than that of both standard homojunction crystalline silicon (Homogeneous Emitter HE) and front contact heterojuction (Heterojunction with Intrinsic Thin layer HIT) solar cells. However it is clear that the criticalities of this structure are mainly due to the defects density and to the poor carriers transport mobility in the amorphous silicon layers. Lastly, the influence of the most critical geometrical and physical parameters on the main figures of merit have been investigated by applying the numerical simulation tool set-up during the first part of the present thesis. Simulations have highlighted that carrier mobility and defects level in amorphous silicon may lead to a potentially significant reduction of the conversion efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this research was to assess preservice teachers self-efficacy at different stages of their educational career in an attempt to determine the extent to which self-efficacy beliefs may change over time. In addition, the critical incidents, which may contribute to changes in self-efficacy, were also investigated. The instrument used in the study was the Teaching Science as Inquiry (TSI) Instrument. The TSI Instrument was administered to 38 preservice elementary teachers to measure the self-efficacy beliefs of the teacher participants in regard to the teaching of science as inquiry. Based on the results and the associated data analysis, mean and median values demonstrate positive change for self-efficacy and outcome expectancy throughout the data collection period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accuracy of medicine use information was compared for a telephone interview and mail questionnaire, using an in-home medicine check as the standard of assessment The validity of medicine use information varied by data source, level of specificity of data, and respondent characteristics. The mail questionnaire was the more valid source of overall medicine use information. Implications for both service providers and researchers are provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La presente Tesis proporciona una gran cantidad de información con respecto al uso de un nuevo y avanzado material polimérico (con base de poliolefina) especialmente adecuada para ser usada en forma de fibras como adición en el hormigón. Se han empleado fibras de aproximadamente 1 mm de diámetro, longitudes entre 48 y 60 mm y una superficie corrugada. Las prometedoras propiedades de este material (baja densidad, bajo coste, buen comportamiento resistente y gran estabilidad química) justifican el interés en desarrollar el esfuerzo de investigación requerido para demostrar las ventajas de su uso en aplicaciones prácticas. La mayor parte de la investigación se ha realizado usando hormigón autocompactante como matriz, ya que este material es óptimo para el relleno de los encofrados del hormigón, aunque también se ha empleado hormigón normal vibrado con el fin de comparar algunas propiedades. Además, el importante desarrollo del hormigón reforzado con fibras en los últimos años, tanto en investigación como en aplicaciones prácticas, también es muestra del gran interés que los resultados y consideraciones de diseño que esta Tesis pueden tener. El material compuesto resultante, Hormigón Reforzado con Fibras de Poliolefina (HRFP o PFRC por sus siglas inglesas) ha sido exhaustivamente ensayado y estudiado en muchos aspectos. Los resultados permiten establecer cómo conseguidos los objetivos buscados: -Se han cuantificado las propiedades mecánicas del PFRC con el fin de demostrar su buen comportamiento en la fase fisurada de elementos estructurales sometidos a tensiones de tracción. -Contrastar los resultados obtenidos con las bases propuestas en la normativa existente y evaluar las posibilidades para el uso del PFRC con fin estructural para sustituir el armado tradicional con barras de acero corrugado para determinadas aplicaciones. -Se han desarrollado herramientas de cálculo con el fin de evaluar la capacidad del PFRC para sustituir al hormigón armado con las barras habituales de acero. -En base a la gran cantidad de ensayos experimentales y a alguna aplicación real en la construcción, se han podido establecer recomendaciones y consejos de diseño para que elementos de este material puedan ser proyectados y construidos con total fiabilidad. Se presentan, además, resultados prometedores en una nueva línea de trabajo en el campo del hormigón reforzado con fibras combinando dos tipologías de fibras. Se combinaron fibras de poliolefina con fibras de acero como refuerzo del mismo hormigón autocompactante detectándose sinergias que podrían ser la base del uso futuro de esta tecnología de hormigón. This thesis provides a significant amount of information on the use of a new advanced polymer (polyolefin-based) especially suitable in the form of fibres to be added to concrete. At the time of writing, there is a noteworthy lack of research and knowledge about use as a randomly distributed element to reinforce concrete. Fibres with an approximate 1 mm diameter, length of 48-60 mm, an embossed surface and improved mechanical properties are employed. The promising properties of the polyolefin material (low density, inexpensive, and with good strength behaviour and high chemical stability) justify the research effort involved and demonstrate the advantages for practical purposes. While most of the research has used self-compacting concrete, given that this type of matrix material is optimum in filling the concrete formwork, for comparison purposes standard vibration compacted mixes have also been used. In addition, the interest in fibre-reinforced concrete technology, in both research and application, support the significant interest in the results and considerations provided by the thesis. The resulting composite material, polyolefin fibre reinforced concrete (PFRC) has been extensively tested and studied. The results have allowed the following objectives to be met: -Assessment of the mechanical properties of PFRC in order to demonstrate the good performance in the post-cracking strength for structural elements subjected to tensile stresses. -- Assessment of the results in contrast with the existing structural codes, regulations and test methods. The evaluation of the potential of PFRC to meet the requirements and replace traditional steel-bar reinforcement applications. -Development of numerical tools designed to evaluate the capability of PFRC to substitute, either partially or totally, standard steel reinforcing bars either alone or in conjunction with steel fibres. -Provision, based on the large amount of experimental work and real applications, of a series of guidelines and recommendations for the practical and reliable design and use of PFRC. Furthermore, the thesis also reports promising results about an innovative line in the field of fibre-reinforced concrete: the design of a fibre cocktail to reinforce the concrete by using two types of fibres simultaneously. Polyolefin fibres were combined with steel fibres in self-compacting concrete, identifying synergies that could serve as the base in the future use of fibre-reinforced concrete technology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-suicidal self-injury (NSSI), such as cutting and burning, is a widespread social problem among lesbian, gay, bisexual, transgender, queer, and questioning (LGBTQ) youth. Extant research indicates that this population is more than twice as likely to engage in NSSI than heterosexual and cisgender (non-transgender) youth. Despite the scope of this social problem, it remains relatively unexamined in the literature. Research on other risk behaviors among LGBTQ youth indicates that experiencing homophobia and transphobia in key social contexts such as families, schools, and peer relationships contributes to health disparities among this group. Consequently, the aims of this study were to examine: (1) the relationship between LGBTQ youth's social environments and their NSSI behavior, and (2) whether/how specific aspects of the social environment contribute to an understanding of NSSI among LGBTQ youth. This study was conducted using an exploratory, sequential mixed methods design with two phases. The first phase of the study involved analysis of transcripts from interviews conducted with 44 LGBTQ youth recruited from a community-based organization. In this phase, five qualitative themes were identified: (1) Violence; (2) Misconceptions, Stigma, and Shame; (3) Negotiating LGBTQ Identity; (4) Invisibility and Isolation; and (5) Peer Relationships. Results from the qualitative phase were used to identify key variables and specify statistical models in the second, quantitative, phase of the study, using secondary data from a survey of 252 LGBTQ youth. The qualitative phase revealed how LGBTQ youth, themselves, described the role of the social environment in their NSSI behavior, while the quantitative phase was used to determine whether the qualitative findings could be used to predict engagement in NSSI among a larger sample of LGBTQ youth. The quantitative analyses found that certain social-environmental factors such as experiencing physical abuse at home, feeling unsafe at school, and greater openness about sexual orientation significantly predicted the likelihood of engaging in NSSI among LGBTQ youth. Furthermore, depression partially mediated the relationships between family physical abuse and NSSI and feeling unsafe at school and NSSI. The qualitative and quantitative results were compared in the interpretation phase to explore areas of convergence and incongruence. Overall, this study's findings indicate that social-environmental factors are salient to understanding NSSI among LGBTQ youth. The particular social contexts in which LGBTQ youth live significantly influence their engagement in this risk behavior. These findings can inform the development of culturally relevant NSSI interventions that address the social realities of LGBTQ youth's lives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bibliography: p. 79-80.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vita.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois, 1970.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

S/N 017-024-02146-7