939 resultados para Seasonal Variation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The condition and quality of cultured blue mussels (Mytilus edulis) are affected by various environmental characteristics including temperature, salinity, food concentration, composition and year-to-year variability, waves, tides, and currents. Mussels are a keystone species in the ecosystem, affecting the surrounding environment through filtration, biodeposition and nutrient recycling. This study evaluated the effects of culture depth and post-harvest handling on cultured blue mussels in Newfoundland, Canada. Depth was examined over two years; three shallow water (5 m depth) and three deep water sites (15 m depth) were compared for environmental characteristics, mussel physiological stress response, growth, and biochemical composition. The area examined presented complex hydrodynamic characteristics; deep water sites appeared to be located more often near or within the pycnocline than shallow water sites. Deep water sites presented lower temperatures than shallow sites from spring to fall. Physiological stress response varied seasonally, but was unaffected by culture depth. In Year 1 shallow and deep water mussels presented similar growth, while in Year 2 deep water mussels showed better final condition. Lipid and glycogen showed seasonal variation, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a higher content of omega-3s PUFA in deep water sites at the end of Year 2. Under extreme weather conditions, deep water appeared to provide a more stable environment for mussel growth than shallow water. Harvested mussels were kept under ambient live-holding conditions for one month during the fall, winter, and spring seasons. They were compared to freshly harvested mussels for condition, biochemical profile and palatability. A progressive loss of dry tissue weight and an increase in water content were shown over the holding period during the fall and spring seasons, when compared to field controls. The biochemical analysis suggested seasonal changes; differences in triacylglycerol content were found in the spring season when compared with controls. The palatability data indicated that the panellists were unable to determine a difference between mussels kept in holding and those freshly harvested from the site. This study presents new knowledge for mussel farming, especially in terms of environmental interactions and deep water culture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to assess seasonal variation in nutritional status and feeding practices among lactating mothers and their children 6-23 months of age in two different agro-ecological zones of rural Ethiopia (lowland zone and midland zone). Food availability and access are strongly affected by seasonality in Ethiopia. However, there are few published data on the effects of seasonal food fluctuations on nutritional status and dietary diversity patterns of mothers and children in rural Ethiopia. A longitudinal study was conducted among 216 mothers in two agro-ecological zones of rural Ethiopia during pre and post-harvest seasons. Data were collected on many parameters including anthropometry, blood levels of haemoglobin and ferritin and zinc, urinary iodine levels, questionnaire data regarding demographic and household parameters and health issues, and infant and young child feeding practices, 24 h food recall to determine dietary diversity scores, and household use of iodized salt. Chi-square and multivariable regression models were used to identify independent predictors of nutritional status. A wide variety of results were generated including the following highlights. It was found that 95.4% of children were breastfed, of whom 59.7% were initially breastfed within one hour of birth, 22.2% received pre-lacteal feeds, and 50.9% of children received complementary feedings by 6 months of age. Iron deficiency was found in 44.4% of children and 19.8% of mothers. Low Zinc status was found in 72.2% of children and 67.3% of mothers. Of the study subjects, 52.5% of the children and 19.1% of the mothers were anaemic, and 29.6% of children and 10.5% of mothers had iron deficiency anaemia. Among the mothers with low serum iron status, 81.2% and 56.2% of their children had low serum zinc and iron, respectively. Similarly, among the low serum zinc status mothers, 75.2% and 45.3% of their children had low serum in zinc and iron, respectively. There was a strong correlation between the micronutrient status of the mothers and the children for ferritin, zinc and haemoglobin (P <0.001). There was also statistically significant difference between agro-ecological zones for micronutrient deficiencies among the mothers (p<0.001) but not for their children. The majority (97.6%) of mothers in the lowland zone were deficient in at least one micronutrient biomarker (zinc or ferritin or haemoglobin). Deficiencies in one, two, or all three biomarkers of micronutrient status were observed in 48.1%, 16.7% and 9.9% of mothers and 35.8%, 29.0%, and 23.5%, of children, respectively. Additionally, about 42.6% of mothers had low levels of urinary iodine and 35.2% of lactating mothers had goitre. Total goitre prevalence rates and urinary iodine levels of lactating mothers were not significantly different across agro-ecological zones. Adequately iodised salt was available in 36.6% of households. The prevalence of anaemia increased from post-harvest (21.8%) to pre-harvest seasons (40.9%) among lactating mothers. Increases were from 8.6% to 34.4% in midland and from 34.2% to 46.3% in lowland agro-ecological zones. Fifteen percent of mothers were anaemic during both seasons. Predictors of anaemia were high parity of mother and low dietary diversity. The proportion of stunted and underweight children increased from 39.8% and 27% in post-harvest season to 46.0% and 31.8% in pre-harvest season, respectively. However, wasting in children decreased from 11.6% to 8.5%. Major variations in stunting and underweight were noted in midland compared to lowland agroecological zones. Anthropometric measurements in mothers indicated high levels of undernutrition. The prevalence of undernutrition in mothers (BMI <18.5kg/m2) increased from 41.7 to 54.7% between post- and pre-harvest seasons. The seasonal effect was generally higher in the midland community for all forms of malnutrition. Parity, number of children under five years and regional variation were predictors of low BMI among lactating mothers. There were differences in minimum meal frequency, minimum acceptable diet and dietary diversity in children in pre-harvest and post-harvest seasons and these parameters were poor in both seasons. Dietary diversity among mothers was higher in lowland zone but was poor in both zones across the seasons. In conclusion, malnutrition and micronutrient deficiencies are very prevalent among lactating mothers and their children 6-23 months old in the study areas. There are significant seasonal variations in malnutrition and dietary diversity, in addition to significant differences between lowland and midland agro-ecological zones. These findings suggest a need to design effective preventive public health nutrition programs to address both the mothers’ and children’s needs particularly in the preharvest season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Downward particle flux was measured using sediment traps at various depths over the Porcupine Abyssal Plain (water depth ab. 4850 m) for prolonged periods from 1989 to 1999. A strong seasonal pattern of flux was evident reaching a maximum in mid-summer. The composition of the material changed with depth, reflecting the processes of remineralisation and dissolution as the material sank through the water column. However, there was surprisingly little seasonal variation in its composition to reflect changes in the biology of the euphotic zone. Currents at the site have a strong tidal component with speeds almost always less than 15 cm/sec. In the deeper part of the water column they tend to be northerly in direction, when averaged over periods of several months. A model of upper ocean biogeochemistry forced by meteorology was run for the decade in order to provide an estimate of flux at 3000 m depth. Agreement with measured organic carbon flux is good, both in terms of the timings of the annual peaks and in the integrated annual flux. Interannual variations in the integrated flux are of similar magnitude for both the model output and sediment trap measurements, but there is no significant relationship between these two sets of estimates. No long-term trend in flux is evident, either from the model, or from the measurements. During two spring/summer periods, the marine snow concentration in the water column was assessed by time-lapse photography and showed a strong peak at the start of the downward pulse of material at 3000 m. This emphasises the importance of large particles during periods of maximum flux and at the start of flux peaks. Time lapse photographs of the seabed show a seasonal cycle of coverage of phytodetrital material, in agreement with the model output both in terms of timing and magnitude of coverage prior to 1996. However, after a change in the structure of the benthic community in 1996 no phytodetritus was evident on the seabed. The model output shows only a single peak in flux each year, whereas the measured data usually indicated a double peak. It is concluded that the observed double peak may be a reflection of lowered sediment trap efficiency when flux is very high and is dominated by large marine snow particles. Resuspension into the trap 100 m above the seabed, when compared to the primary flux at 3000 m depth (1800 mab) was lower during periods of high primary flux probably because of a reduction in the height of resuspension when the material is fresh. At 2 mab, the picture is more complex with resuspension being enhanced during the periods of higher flux in 1997, which is consistent with this hypothesis. However there was rather little relationship to flux at 3000 m in 1998. At 3000 m depth, the Flux Stability Index (FSI), which provides a measure of the constancy of the seasonal cycle of flux, exhibited an inverse relationship with flux, such that the highest flux of organic carbon was recorded during the year with the greatest seasonal variation.