841 resultados para Sealing ability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin D is unique among the vitamins in that humans can synthesize it via the action of UV radiation upon the skin. This combined with its ability to act on specific target tissues via Vitamin D Receptor’s (VDR) make its classification as a steroid hormone more appropriate. While Vitamin D deficiency is a recognized problem in some northern latitude countries, recent studies have shown even in sunny countries such as Australia, vitamin D deficiency may be more prevalent than first thought. Vitamin D is most well known for its role in bone health, however, the discovery of VDR’s on a wide variety of tissue types has also opened up roles for vitamin D far beyond traditional bone health. These include possible associations with autoimmune diseases such as multiple sclerosis and inflammatory bowel diseases, cancer, cardiovascular diseases and muscle strength. Firstly, this paper presents an overview of the two sources of vitamin D: exposure to ultraviolet-B radiation and food sources of vitamin D, with particular focus on both Australian and international studies on dietary vitamin D intake and national fortification strategies. Secondly, the paper reviews recent epidemiological and experimental evidence linking vitamin D and its role in health and disease for the major conditions linked to suboptimal vitamin D, while identifying significant gaps in the research and possible future directions for research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our students come from diverse backgrounds. They need flexibility in their learning, and opportunities to review aspects of curriculum they are less confident with. An online teaching and learning programme called the Histology Challenge has been developed to supplement learning experiences offered in several first year anatomy and anatomy & physiology units at QUT. The programme is designed to be integrated with the existing Blackboard sites. The Histology Challenge emphasises the foundation concept that a complex system, such as the human body, can be better understood by examining its simpler components. The tutorial allows students to examine the cells and tissues which ultimately determine structural and functional properties of body organs. The program is interactive, asking students to make decisions and choices, demonstrating an integrated understanding of systemic and cellular aspects. It provides users with the ability to progress at their own pace and to test their understanding and knowledge. For the developer the learning activity can be easily controlled and modified via the use of text files. There are several key elements of this programme, designed to promote specific aspects of student learning. Minimum text is used, instead there is a strong emphasis on instructive artwork and original, high quality histology images presented within a framework that reinforces learning and promotes problem solving skills.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-energy wasting (PEW) is commonly seen in patients with chronic kidney disease (CKD). The condition is characterised by chronic, systemic low-grade inflammation which affects nutritional status by a variety of mechanisms including reducing appetite and food intake and increasing muscle catabolism. PEW is linked with co-morbidities such as cardiovascular disease, and is associated with lower quality of life, increased hospitalisations and a 6-fold increase in risk of death1. Significant gender differences have been found in the severity and effects of several markers of PEW. There have been limited studies testing the ability of anti-inflammatory agents or nutritional interventions to reduce the effects of PEW in dialysis patients. This thesis makes a significant contribution to the understanding of PEW in dialysis patients. It advances understanding of measurement techniques for two of the key components, appetite and inflammation, and explores the effect of fish oil, an anti-inflammatory agent, on markers of PEW in dialysis patients. The first part of the thesis consists of two methodological studies conducted using baseline data. The first study aims to validate retrospective ratings of hunger, desire to eat and fullness on visual analog scales (VAS) (paper and pen and electronic) as a new method of measuring appetite in dialysis patients. The second methodological study aims to assess the ability of a variety of methods available in routine practice to detect the presence of inflammation. The second part of the thesis aims to explore the effect of 12 weeks supplementation with 2g per day of Eicosapentaenoic Acid (EPA), a longchain fatty acid found in fish oil, on markers of PEW. A combination of biomarkers and psychomarkers of appetite and inflammation are the main outcomes being explored, with nutritional status, dietary intake and quality of life included as secondary outcomes. A lead in phase of 3 months prior to baseline was used so that each person acts as their own historical control. The study also examines whether there are gender differences in response to the treatment. Being an exploratory study, an important part of the work is to test the feasibility of the intervention, thus the level of adherence and factors associated with adherence are also presented. The studies were conducted at the hemodialysis unit of the Wesley Hospital. Participants met the following criteria: adult, stage 5 CKD on hemodialysis for at least 3 months, not expected to receive a transplant or switch to another dialysis modality during the study, absence of intellectual impairment or mental illness impairing ability to follow instructions or complete the intervention. A range of intermediate, clinical and patient-centred outcome measures were collected at baseline and 12 weeks. Inflammation was measured using five biomarkers: c-reactive protein (CRP), interleukin-6 (IL6), intercellular adhesion molecule (sICAM-1), vascular cell adhesion molecule (sVCAM-1) and white cell count (WCC). Subjective appetite was measured using the first question from the Appetite and Dietary Assessment (ADAT) tool and VAS for measurements of hunger, desire to eat and fullness. A novel feature of the study was the assessment of the appetite peptides leptin, ghrelin and peptide YY as biomarkers of appetite. Nutritional status/inflammation was assessed using the Malnutrition-Inflammation Score (MIS) and the Patient-Generated Subjective Global Assessment (PG-SGA). Dietary intake was measured using 3-day records. Quality of life was measured using the Kidney Disease Quality of Life Short Form version 1.3 (KDQOL-SF™ v1.3 © RAND University), which combines the Short-Form 36 (SF36) with a kidney-disease specific module2. A smaller range of these variables was available for analysis during the control phase (CRP, ADAT, dietary intake and nutritional status). Statistical analysis was carried out using SPSS version 14 (SPSS Inc, Chicago IL, USA). Analysis of the first part of the thesis involved descriptive and bivariate statistics, as well as Bland-Altman plots to assess agreement between methods, and sensitivity analysis/ROC curves to test the ability of methods to predict the presence of inflammation. The unadjusted (paired ttests) and adjusted (linear mixed model) change over time is presented for the main outcome variables of inflammation and appetite. Results are shown for the whole group followed by analyses according to gender and adherence to treatment. Due to the exploratory nature of the study, trends and clinical significance were considered as important as statistical significance. Twenty-eight patients (mean age 61±17y, 50% male, dialysis vintage 19.5 (4- 101) months) underwent baseline assessment. Seven out of 28 patients (25%) reported sub-optimal appetite (self-reported as fair, poor or very poor) despite all being well nourished (100% SGA A). Using the VAS, ratings of hunger, but not desire to eat or fullness, were significantly (p<0.05) associated with a range of relevant clinical variables including age (r=-0.376), comorbidities (r=-0.380) nutritional status (PG-SGA score, r=-0.451), inflammatory markers (CRP r=-0.383; sICAM-1 r=-0.387) and seven domains of quality of life. Patients expressed a preference for the paper and pen method of administering VAS. None of the tools (appetite, MIS, PG-SGA, albumin or iron) showed an acceptable ability to detect patients who are inflamed. It is recommended that CRP should be tested more frequently as a matter of course rather than seeking alternative methods of measuring inflammation. 27 patients completed the 12 week intervention. 20 patients were considered adherent based on changes in % plasma EPA, which rose from 1.3 (0.94)% to 5.2 (1.1)%, p<0.001, in this group. The major barriers to adherence were forgetting to take the tablets as well as their size. At 12 weeks, inflammatory markers remained steady apart from the white cell count which decreased (7.6(2.5) vs 7.0(2.2) x109/L, p=0.058) and sVCAM-1 which increased (1685(654) vs 2249(925) ng/mL, p=0.001). Subjective appetite using VAS increased (51mm to 57mm, +12%) and there was a trend towards reduction in peptide YY (660(31) vs 600(30) pg/mL, p=0.078). There were some gender differences apparent, with the following adjusted change between baseline and week 12: CRP (males -3% vs females +17%, p=0.19), IL6 (males +17% vs females +48%, p=0.77), sICAM-1 (males -5% vs females +11%, p=0.07), sVCAM-1 (males +54% vs females +19%, p=0.08) and hunger ratings (males 20% vs females -5%, p=0.18). On balance, males experienced a maintainence or reduction in three inflammatory markers and an improvement in hunger ratings, and therefore appeared to have responded better to the intervention. Compared to those who didn’t adhere, adherent patients maintained weight (mean(SE) change: +0.5(1.6) vs - 0.8(1.2) kg, p=0.052) and fat-free mass (-0.1 (1.6) vs -1.8 (1.8) kg, p=0.045). There was no difference in change between the intervention and control phase for CRP, appetite, nutritional status or dietary intake. The thesis makes a significant contribution to the evidence base for understanding of PEW in dialysis patients. It has advanced knowledge of methods of assessing inflammation and appetite. Retrospective ratings of hunger on a VAS appear to be a valid method of assessing appetite although samples which include patients with very poor appetite are required to confirm this. Supplementation with fish oil appeared to improve subjective appetite and dampen the inflammatory response. The effectiveness of the intervention is influenced by gender and adherence. Males appear to be more responsive to the primary outcome variables than females, and the quality of response is improved with better adherence. These results provide evidence to support future interventions aimed at reducing the effects of PEW in dialysis patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern machines are complex and often required to operate long hours to achieve production targets. The ability to detect symptoms of failure, hence, forecasting the remaining useful life of the machine is vital to prevent catastrophic failures. This is essential to reducing maintenance cost, operation downtime and safety hazard. Recent advances in condition monitoring technologies have given rise to a number of prognosis models that attempt to forecast machinery health based on either condition data or reliability data. In practice, failure condition trending data are seldom kept by industries and data that ended with a suspension are sometimes treated as failure data. This paper presents a novel approach of incorporating historical failure data and suspended condition trending data in the prognostic model. The proposed model consists of a FFNN whose training targets are asset survival probabilities estimated using a variation of Kaplan-Meier estimator and degradation-based failure PDF estimator. The output survival probabilities collectively form an estimated survival curve. The viability of the model was tested using a set of industry vibration data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the postpartum psychosocial and infant care topics that women and men who attend preparation for parenthood classes have been thinking or worrying about during the pregnancy. Furthermore, to compare the rates of endorsement of such issues for women and men so that clinicians can use this information to help plan which topics to include in preparation for parenthood classes. DESIGN: A survey of expectant parents attending preparation for parenthood classes at a local public hospital. Participants completed a 17- to 19-item postpartum issues checklist devised for the study. SETTING: Preparation for parenthood classes conducted in a public hospital in South Western Sydney, Australia. PARTICIPANTS: People attending the session were in their 2nd to 3rd trimester, of low to middle socioeconomic status, and 95% were expecting their first child. Eighty-five percent of women were accompanied by their male partner at the session. Data are reported from 201 women and 182 men. MEASURE: A 17-item issues checklist was devised initially and later expanded to 19 items. The initial checklist covered three psychosocial issues: interpersonal, intrapersonal, and parental competency. The expanded checklist also included items on infant care issues. Participants rated each item as to the extent to which they had been thinking or worrying about it over the past few weeks. RESULTS: More than half of the men and women had been thinking or worrying about their ability to cope as new parents; just less than half of both men and women endorsed the item regarding the effect having a baby would have on their relationship with their partner; approximately 40% of women had thought that they might get bored or lonely when at home with the baby, and an equal rate of men reported that their partner experiencing this sense of boredom-or loneliness was an issue for them. There were few differences between the genders in the rate of endorsement on the issues checklist. CONCLUSION: That many of the issues on the checklist are prevalent in both women and men at this time in the pregnancy would suggest that these are topics that would be pertinent for inclusion at preparation for parenthood classes. Although the checklist is not exhaustive, the data reported give empirical justification for inclusion of these topics in such classes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inquiry documented in this thesis is located at the nexus of technological innovation and traditional schooling. As we enter the second decade of a new century, few would argue against the increasingly urgent need to integrate digital literacies with traditional academic knowledge. Yet, despite substantial investments from governments and businesses, the adoption and diffusion of contemporary digital tools in formal schooling remain sluggish. To date, research on technology adoption in schools tends to take a deficit perspective of schools and teachers, with the lack of resources and teacher ‘technophobia’ most commonly cited as barriers to digital uptake. Corresponding interventions that focus on increasing funding and upskilling teachers, however, have made little difference to adoption trends in the last decade. Empirical evidence that explicates the cultural and pedagogical complexities of innovation diffusion within long-established conventions of mainstream schooling, particularly from the standpoint of students, is wanting. To address this knowledge gap, this thesis inquires into how students evaluate and account for the constraints and affordances of contemporary digital tools when they engage with them as part of their conventional schooling. It documents the attempted integration of a student-led Web 2.0 learning initiative, known as the Student Media Centre (SMC), into the schooling practices of a long-established, high-performing independent senior boys’ school in urban Australia. The study employed an ‘explanatory’ two-phase research design (Creswell, 2003) that combined complementary quantitative and qualitative methods to achieve both breadth of measurement and richness of characterisation. In the initial quantitative phase, a self-reported questionnaire was administered to the senior school student population to determine adoption trends and predictors of SMC usage (N=481). Measurement constructs included individual learning dispositions (learning and performance goals, cognitive playfulness and personal innovativeness), as well as social and technological variables (peer support, perceived usefulness and ease of use). Incremental predictive models of SMC usage were conducted using Classification and Regression Tree (CART) modelling: (i) individual-level predictors, (ii) individual and social predictors, and (iii) individual, social and technological predictors. Peer support emerged as the best predictor of SMC usage. Other salient predictors include perceived ease of use and usefulness, cognitive playfulness and learning goals. On the whole, an overwhelming proportion of students reported low usage levels, low perceived usefulness and a lack of peer support for engaging with the digital learning initiative. The small minority of frequent users reported having high levels of peer support and robust learning goal orientations, rather than being predominantly driven by performance goals. These findings indicate that tensions around social validation, digital learning and academic performance pressures influence students’ engagement with the Web 2.0 learning initiative. The qualitative phase that followed provided insights into these tensions by shifting the analytics from individual attitudes and behaviours to shared social and cultural reasoning practices that explain students’ engagement with the innovation. Six indepth focus groups, comprising 60 students with different levels of SMC usage, were conducted, audio-recorded and transcribed. Textual data were analysed using Membership Categorisation Analysis. Students’ accounts converged around a key proposition. The Web 2.0 learning initiative was useful-in-principle but useless-in-practice. While students endorsed the usefulness of the SMC for enhancing multimodal engagement, extending peer-topeer networks and acquiring real-world skills, they also called attention to a number of constraints that obfuscated the realisation of these design affordances in practice. These constraints were cast in terms of three binary formulations of social and cultural imperatives at play within the school: (i) ‘cool/uncool’, (ii) ‘dominant staff/compliant student’, and (iii) ‘digital learning/academic performance’. The first formulation foregrounds the social stigma of the SMC among peers and its resultant lack of positive network benefits. The second relates to students’ perception of the school culture as authoritarian and punitive with adverse effects on the very student agency required to drive the innovation. The third points to academic performance pressures in a crowded curriculum with tight timelines. Taken together, findings from both phases of the study provide the following key insights. First, students endorsed the learning affordances of contemporary digital tools such as the SMC for enhancing their current schooling practices. For the majority of students, however, these learning affordances were overshadowed by the performative demands of schooling, both social and academic. The student participants saw engagement with the SMC in-school as distinct from, even oppositional to, the conventional social and academic performance indicators of schooling, namely (i) being ‘cool’ (or at least ‘not uncool’), (ii) sufficiently ‘compliant’, and (iii) achieving good academic grades. Their reasoned response therefore, was simply to resist engagement with the digital learning innovation. Second, a small minority of students seemed dispositionally inclined to negotiate the learning affordances and performance constraints of digital learning and traditional schooling more effectively than others. These students were able to engage more frequently and meaningfully with the SMC in school. Their ability to adapt and traverse seemingly incommensurate social and institutional identities and norms is theorised as cultural agility – a dispositional construct that comprises personal innovativeness, cognitive playfulness and learning goals orientation. The logic then is ‘both and’ rather than ‘either or’ for these individuals with a capacity to accommodate both learning and performance in school, whether in terms of digital engagement and academic excellence, or successful brokerage across multiple social identities and institutional affiliations within the school. In sum, this study takes us beyond the familiar terrain of deficit discourses that tend to blame institutional conservatism, lack of resourcing and teacher resistance for low uptake of digital technologies in schools. It does so by providing an empirical base for the development of a ‘third way’ of theorising technological and pedagogical innovation in schools, one which is more informed by students as critical stakeholders and thus more relevant to the lived culture within the school, and its complex relationship to students’ lives outside of school. It is in this relationship that we find an explanation for how these individuals can, at the one time, be digital kids and analogue students.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The value of soil evidence in the forensic discipline is well known. However, it would be advantageous if an in-situ method was available that could record responses from tyre or shoe impressions in ground soil at the crime scene. The development of optical fibres and emerging portable NIR instruments has unveiled a potential methodology which could permit such a proposal. The NIR spectral region contains rich chemical information in the form of overtone and combination bands of the fundamental infrared absorptions and low-energy electronic transitions. This region has in the past, been perceived as being too complex for interpretation and consequently was scarcely utilized. The application of NIR in the forensic discipline is virtually non-existent creating a vacancy for research in this area. NIR spectroscopy has great potential in the forensic discipline as it is simple, nondestructive and capable of rapidly providing information relating to chemical composition. The objective of this study is to investigate the ability of NIR spectroscopy combined with Chemometrics to discriminate between individual soils. A further objective is to apply the NIR process to a simulated forensic scenario where soil transfer occurs. NIR spectra were recorded from twenty-seven soils sampled from the Logan region in South-East Queensland, Australia. A series of three high quartz soils were mixed with three different kaolinites in varying ratios and NIR spectra collected. Spectra were also collected from six soils as the temperature of the soils was ramped from room temperature up to 6000C. Finally, a forensic scenario was simulated where the transferral of ground soil to shoe soles was investigated. Chemometrics methods such as the commonly known Principal Component Analysis (PCA), the less well known fuzzy clustering (FC) and ranking by means of multicriteria decision making (MCDM) methodology were employed to interpret the spectral results. All soils were characterised using Inductively Coupled Plasma Optical Emission Spectroscopy and X-Ray Diffractometry. Results were promising revealing NIR combined with Chemometrics is capable of discriminating between the various soils. Peak assignments were established by comparing the spectra of known minerals with the spectra collected from the soil samples. The temperature dependent NIR analysis confirmed the assignments of the absorptions due to adsorbed and molecular bound water. The relative intensities of the identified NIR absorptions reflected the quantitative XRD and ICP characterisation results. PCA and FC analysis of the raw soils in the initial NIR investigation revealed that the soils were primarily distinguished on the basis of their relative quartz and kaolinte contents, and to a lesser extent on the horizon from which they originated. Furthermore, PCA could distinguish between the three kaolinites used in the study, suggesting that the NIR spectral region was sensitive enough to contain information describing variation within kaolinite itself. The forensic scenario simulation PCA successfully discriminated between the ‘Backyard Soil’ and ‘Melcann® Sand’, as well as the two sampling methods employed. Further PCA exploration revealed that it was possible to distinguish between the various shoes used in the simulation. In addition, it was possible to establish association between specific sampling sites on the shoe with the corresponding site remaining in the impression. The forensic application revealed some limitations of the process relating to moisture content and homogeneity of the soil. These limitations can both be overcome by simple sampling practices and maintaining the original integrity of the soil. The results from the forensic scenario simulation proved that the concept shows great promise in the forensic discipline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cascading appearance-based (CAB) feature extraction technique has established itself as the state of the art in extracting dynamic visual speech features for speech recognition. In this paper, we will focus on investigating the effectiveness of this technique for the related speaker verification application. By investigating the speaker verification ability of each stage of the cascade we will demonstrate that the same steps taken to reduce static speaker and environmental information for the speech recognition application also provide similar improvements for speaker recognition. These results suggest that visual speaker recognition can improve considerable when conducted solely through a consideration of the dynamic speech information rather than the static appearance of the speaker's mouth region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of knowledge has become central to economic life. Competitiveness in the 21st century market place is now characterized by the ability to translate scientific and technological knowledge into innovation. But does this render cultural and social knowledge unimportant? This unique book advocates a broader epistemological base for the term ‘knowledge’ and develops policy implications from this perspective. By examining long-term challenges, the volume argues that fresh policy thinking is needed not only in the obviously knowledge-intensive portfolios but across all areas of knowledge production and questions how the different dynamics of the knowledge era affect defence, employment, environment, indigenous and international relations, multiculturalism and urban policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.