855 resultados para Scenario Programming, Markup Language, End User Programming
Resumo:
This paper estimates the marginal willingness-to-pay for attributes of a hypothetical HIV vaccine using discrete choice modeling. We use primary data from 326 respondents from Bangkok and Chiang Mai, Thailand, in 2008–2009, selected using purposive, venue-based sampling across two strata. Participants completed a structured questionnaire and full rank discrete choice modeling task administered using computer-assisted personal interviewing. The choice experiment was used to rank eight hypothetical HIV vaccine scenarios, with each scenario comprising seven attributes (including cost) each of which had two levels. The data were analyzed in two alternative specifications: (1) best-worst; and (2) full-rank, using logit likelihood functions estimated with custom routines in Gauss matrix programming language. In the full-rank specification, all vaccine attributes are significant predictors of probability of vaccine choice. The biomedical attributes of the hypothetical HIV vaccine (efficacy, absence of VISP, absence of side effects, and duration of effect) are the most important attributes for HIV vaccine choice. On average respondents are more than twice as likely to accept a vaccine with 99% efficacy, than a vaccine with 50% efficacy. This translates to a willingness to pay US$383 more for a high efficacy vaccine compared with the low efficacy vaccine. Knowledge of the relative importance of determinants of HIV vaccine acceptability is important to ensure the success of future vaccination programs. Future acceptability studies of hypothetical HIV vaccines should use more finely grained biomedical attributes, and could also improve the external validity of results by including more levels of the cost attribute.
Resumo:
Performance evaluation of parallel software and architectural exploration of innovative hardware support face a common challenge with emerging manycore platforms: they are limited by the slow running time and the low accuracy of software simulators. Manycore FPGA prototypes are difficult to build, but they offer great rewards. Software running on such prototypes runs orders of magnitude faster than current simulators. Moreover, researchers gain significant architectural insight during the modeling process. We use the Formic FPGA prototyping board [1], which specifically targets scalable and cost-efficient multi-board prototyping, to build and test a 64-board model of a 512-core, MicroBlaze-based, non-coherent hardware prototype with a full network-on-chip in a 3D-mesh topology. We expand the hardware architecture to include the ARM Versatile Express platforms and build a 520-core heterogeneous prototype of 8 Cortex-A9 cores and 512 MicroBlaze cores. We then develop an MPI library for the prototype and evaluate it extensively using several bare-metal and MPI benchmarks. We find that our processor prototype is highly scalable, models faithfully single-chip multicore architectures, and is a very efficient platform for parallel programming research, being 50,000 times faster than software simulation.
Resumo:
This paper introduces hybrid address spaces as a fundamental design methodology for implementing scalable runtime systems on many-core architectures without hardware support for cache coherence. We use hybrid address spaces for an implementation of MapReduce, a programming model for large-scale data processing, and the implementation of a remote memory access (RMA) model. Both implementations are available on the Intel SCC and are portable to similar architectures. We present the design and implementation of HyMR, a MapReduce runtime system whereby different stages and the synchronization operations between them alternate between a distributed memory address space and a shared memory address space, to improve performance and scalability. We compare HyMR to a reference implementation and we find that HyMR improves performance by a factor of 1.71× over a set of representative MapReduce benchmarks. We also compare HyMR with Phoenix++, a state-of-art implementation for systems with hardware-managed cache coherence in terms of scalability and sustained to peak data processing bandwidth, where HyMR demon- strates improvements of a factor of 3.1× and 3.2× respectively. We further evaluate our hybrid remote memory access (HyRMA) programming model and assess its performance to be superior of that of message passing.
Resumo:
Structured parallel programming is recognised as a viable and effective means of tackling parallel programming problems. Recently, a set of simple and powerful parallel building blocks RISC pb2l) has been proposed to support modelling and implementation of parallel frameworks. In this work we demonstrate how that same parallel building block set may be used to model both general purpose parallel programming abstractions, not usually listed in classical skeleton sets, and more specialized domain specific parallel patterns. We show how an implementation of RISC pb2 l can be realised via the FastFlow framework and present experimental evidence of the feasibility and efficiency of the approach.
Resumo:
In this paper we extend the minimum-cost network flow approach to multi-target tracking, by incorporating a motion model, allowing the tracker to better cope with longterm occlusions and missed detections. In our new method, the tracking problem is solved iteratively: Firstly, an initial tracking solution is found without the help of motion information. Given this initial set of tracklets, the motion at each detection is estimated, and used to refine the tracking solution.
Finally, special edges are added to the tracking graph, allowing a further revised tracking solution to be found, where distant tracklets may be linked based on motion similarity. Our system has been tested on the PETS S2.L1 and Oxford town-center sequences, outperforming the baseline system, and achieving results comparable with the current state of the art.
Resumo:
Credal nets are probabilistic graphical models which extend Bayesian nets to cope with sets of distributions. An algorithm for approximate credal network updating is presented. The problem in its general formulation is a multilinear optimization task, which can be linearized by an appropriate rule for fixing all the local models apart from those of a single variable. This simple idea can be iterated and quickly leads to accurate inferences. A transformation is also derived to reduce decision making in credal networks based on the maximality criterion to updating. The decision task is proved to have the same complexity of standard inference, being NPPP-complete for general credal nets and NP-complete for polytrees. Similar results are derived for the E-admissibility criterion. Numerical experiments confirm a good performance of the method.
Resumo:
A credal network associates a directed acyclic graph with a collection of sets of probability measures; it offers a compact representation for sets of multivariate distributions. In this paper we present a new algorithm for inference in credal networks based on an integer programming reformulation. We are concerned with computation of lower/upper probabilities for a variable in a given credal network. Experiments reported in this paper indicate that this new algorithm has better performance than existing ones for some important classes of networks.