989 resultados para STRONG ION GAP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of vanadium-niobium oxide catalysts in which the vanadia content varies between 0.3 and 18mol%was prepared by coprecipitation. These catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS), and by catalytic testing in the oxidative dehydrogenation reaction of propane. The results of the surface analysis by XPS and LEIS are compared. It is concluded that the active site on the catalyst surface contains 2.0 ± 0.3 vanadium atoms on average. This can be understood byassuming the existenceof two or three different sites:isolated vanadium atoms, pairs of vanadium atoms, or ensembles of three vanadium atoms. At higher vanadium concentration more vanadium clusters with a higher activity are at the surface.LEIS revealed that as the vanadium concentration in the catalyst increases, vanadium replaces niobium at the surface. At vanadium concentrations above 8 mol%, new phases such as P-(Nb, V)20S which are less active because vanadium is present in isolated sites are formed, while the vanadium surface concentration shows a slight decrease

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanocomposites containing iron oxide particles embedded in a polymer matrix have been synthesized using the method of ion exchange. They have been characterized by using low temperature and room temperature magnetic measurements and Mo¨ ssbauer spectroscopy. The iron content in these samples has also been determined. The results have been analysed and explained. The physical and chemical properties of these nanocomposite materials are different from those of the bulk. Some of the unique properties of these materials find application in information storage, color imaging, ferrofluids and magnetic refrigeration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe–Ni based amorphous thin films were prepared by thermal evaporation. These films were irradiated by 108 MeV Ag8+ ions at room temperature with fluences ranging from 1 1012 to 3 1013 ions/cm2 using a 15 UD Pelletron accelerator. Glancing angle x-ray diffraction studies showed that the irradiated films retain their amorphous nature. The topographical evolution of the films under swift heavy ion SHI bombardment was probed using atomic force microscope and it was noticed that surface roughening was taking place with ion beam irradiation. Magnetic measurements using a vibrating sample magnetometer showed that the coercivity of the films increases with an increase in the ion fluence. The observed coercivity changes are correlated with topographical evolution of the films under SHI irradiation. The ability to modify the magnetic properties via SHI irradiation could be utilized for applications in thin film magnetism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au9+ beam with fluences ranging from 3 1011 to 3 1013 ions/cm2. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co77Fe23 thin films on silicon substrates using 100 MeV Ag7+ ions fluences of 1 1011 ions/ cm2, 1 1012 ions/cm2, 1 1013 ions/cm2, and 3 1013 ions/cm2. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman and FTIR spectra of CaFeTi(PO4)3 and CdFeTi(PO4)3 are recorded and analyzed. The observed bands are assigned in terms of vibrations of TiO6 octahedra and PO4 tetrahedra. The symmetry of TiO6 octrahedra and PO4 tetrahedra is lowered from their free ion symmetry. The presence of Fe3+ ion disrupts the Ti–O–P–O–Ti chain and leads to the distortion of TiO6 octrahedra and PO4 tetrahedra. The PO4 3 tetrahedra in both crystals are linearly distorted. The covalency bonding factor of PO4 3 polyanion of both the crystals are calculated from the Raman spectra and compared to that of other Nasicon-type systems. The numerical values of covalency bonding factor indicates that there is a reduction in redox energy and cell voltage and is attributed to strong covalency of PO4 3 polyanionin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared and polarized Raman spectra of Cu(HSeO3) 2 - H20 single crystal have been recorded and analysed. The appearance of non-degenerate Se-OH stretching vibrations in the ~x: and ~y: polarizations of Raman spectra indicate distortion of the HSeO~- ion in the Cu(HSeO3)2 - H20 crystal. The low wavenumber values obtained for the symmetric and asymmetric stretching vibrations of the HSeO 3 ion are consistent with the strong hydrogen bonding and the influence of Jahn-Teller distortion as predicted in X-ray diffraction data. The shifting of the stretching and bending vibrations of the hydroxyl groups and water molecules from the free state values also confirms the strong hydrogen bonding in this crystal. Broad bands observed for both stretching and bending regions become sharp in the Raman spectrum recorded at 77 K. A doublet appears for the Se-OH stretching mode at this temperature indicating the settling of protons in an ordered position and the absence of intrabond proton tunnelling

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanoflowers were synthesized by the hydrothermal process at an optimized growth temperature of 200 ◦C and a growth/reaction time of 3 h. As-prepared ZnO nanoflowers were characterized by x-ray diffraction, scanning electron microscopy, UV–visible and Raman spectroscopy. X-ray diffraction and Raman studies reveal that the as-synthesized flower-like ZnO nanostructures are highly crystalline with a hexagonal wurtzite phase preferentially oriented along the (1 0 1 1) plane. The average length (234–347 nm) and diameter (77–106 nm) of the nanorods constituting the flower-like structure are estimated using scanning electron microscopy studies. The band gap of ZnO nanoflowers is estimated as 3.23 eV, the lowering of band gap is attributed to the flower-like surface morphology and microstructure of ZnO. Room temperature photoluminescence spectrum shows a strong UV emission peak at 392 nm, with a suppressed visible emission related to the defect states, indicating the defect free formation of ZnO nanoflowers that can be potentially used for UV light-emitting devices. The suppressed Raman bands at 541 and 583 cm−1 related to defect states in ZnO confirms that the ZnO nanoflowers here obtained have a reduced presence of defects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FTIR and Raman spectra of FeClMoO4 single crystal and polycrystalline Na2MoO4, Na2MoO4·2H2O and Na2MoO4·2D2O are recorded and analysed. The band positions for different modes suggest that MoO4 tetrahedron is more distorted in FeClMoO4. The larger splitting observed for the bending modes and partial retention of degeneracy of the asymmetric stretching mode indicate that angular distortion is greater than liner distortion in MoO4 2 ion in FeClMoO4 confirming x-ray data. The non-appearance of the n1 and n2 modes in the IR and partial retention of the degeneracies of various modes show that MoO4 2 ion retains Td symmetry in Na2MoO4. Wavenumber values of the n1 mode indicate that the distortion of MoO4 tetrahedra in the four crystals are in the order FeClMoO4\ Na2MoO4·2H2O\Na2MoO4·2D2O\Na2MoO4. The water bands suggest the presence of two crystallographically distinct water molecules in Na2MoO4·2H2O. They form strong hydrogen bonds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparat ive study of the effect oflaser in inducing chro mosomal aberrat ions at 4gg nm was done in View j aba L. (faba bean) and Allium ccpa L. (onion) with Argon ion laser (Spectra Physics Model 171). Seeds and bulbs of V.jaba and A. eepa were subjected to laser irra diation by 4gg nm excitations from Argon ion laser source at power levels 200 and 400 mW with power densities 2.25 mW em" and 4.49 mW em" and ditTerent exposure times (10, 20, 30 & 40 minutes). Similar to the effect of oth er physical and chemical mutagens, laser caused a dose dependent decrease in mitotic index and a rise in mitotic aberrations when compared to the control. In both plant species, mutations were observed in all stages of mitotic cell cycle. The total percentage of aberrations was two fold higher at 400 mW than at 200 mW exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an attempt to understand the important factors that control the occurrence, development and hydrochemical evolution of groundwater resources in sedimentary multi aquifer systems. The primary objective of this work is an integrated study of the hydrogeology and hydrochemistry with a view to elucidate the hydrochemical evolution of groundwater resources in the aquifer systems. The study is taken up in a typical coastal sedimentary aquifer system evolved under fluvio-marine environment in the coastal area of Kerala, known as the Kuttanad. The present study has been carried out to understand the aquifer systems, their inter relationships and evolution in the Kuttanad area of Kerala. The multi aquifer systems in the Kuttanad basin were formed from the sediments deposited under fluvio-marine and fluvial depositional environments and the marine transgressions and regressions in the geological past and palaeo climatic conditions influenced the hydrochemical environment in these aquifers. The evolution of groundwater and the hydrochemical processes involved in the formation of the present day water quality are elucidated from hydrochemical studies and the information derived from the aquifer geometry and hydraulic properties. Kuttanad area comprises of three types of aquifer systems namely phreatic aquifer underlain by Recent confined aquifer followed by Tertiary confined aquifers. These systems were formed by the deposition of sediments under fluvio-marine and fluvial environment. The study of the hydrochemical and hydraulic properties of the three aquifer systems proved that these three systems are separate entities. The phreatic aquifers in the area have low hydraulic gradients and high rejected recharge. The Recent confined aquifer has very poor hydraulic characteristics and recharge to this aquifer is very low. The Tertiary aquifer system is the most potential fresh water aquifer system in the area and the groundwater flow in the aquifer is converging towards the central part of the study area (Alleppey town) due to large scale pumping of water for water supply from this aquifer system. Mixing of waters and anthropogenic interferences are the dominant processes modifying the hydrochemistry in phreatic aquifers. Whereas, leaching of salts and cation exchange are the dominant processes modifying the hydrochemistry of groundwater in the confined aquifer system of Recent alluvium. Two significant chemical reactions modifying the hydrochemistry in the Recent aquifers are oxidation of iron in ferruginous clays which contributes hydrogen ions and the decomposition of organic matter in the aquifer system which consumes hydrogen ions. The hydrochemical environment is entirely different in the Tertiary aquifers as the groundwater in this aquifer system are palaeo waters evolved during various marine transgressions and regressions and these waters are being modified by processes of leaching of salts, cation exchange and chemical reactions under strong reducing environment. It is proved that the salinity observed in the groundwaters of Tertiary aquifers are not due to seawater mixing or intrusion, but due to dissolution of salts from the clay formations and ion exchange processes. Fluoride contamination in this aquifer system lacks a regional pattern and is more or less site specific in natureThe lowering of piezometric heads in the Tertiary aquifer system has developed as consequence of large scale pumping over a long period. Hence, puping from this aquifer system is to be regulated as a groundwater management strategy. Pumping from the Tertiary aquifers with high capacity pumps leads to well failures and mixing of saline water from the brackish zones. Such mixing zones are noticed from the hydrochemical studies. This is the major aquifer contamination in the Tertiary aquifer system which requires immediate attention. Usage of pumps above 10 HP capacities in wells taping Tertiary aquifers should be discouraged for sustainable development of these aquifers. The recharge areas need to be identified precisely for recharging the aquifer systems throughartificial means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanophotonics can be regarded as a fusion of nanotechnology and photonics and it is an emerging field providing researchers opportunities in fundamental science and new technologies. In recent times many new methodsand techniques have been developed to prepare materials at nanoscale dimensions. Most of these materials exhibit unique and interesting optical properties and behavior. Many of these have been found to be very useful to develop new devices and systems such as tracers in biological systems, optical limiters, light emitters and energy harvesters. This thesis presents a summary of the work done by the author in the field by choosing a few semiconductor systems to prepare nanomaterials and nanocomposites. Results of the study of linear and nonlinear optical properties of materials thus synthesized are also presented in the various chapters of this thesis. CdS is the material chosen here and the methods and the studies of the detailed investigation are presented in this thesis related to the optical properties of CdS nanoparticles and its composites. Preparation and characterization methods and experimental techniques adopted for the investigations were illustrated in chapter 2 of this thesis. Chapter 3 discusses the preparation of CdS, TiO2 and Au nanoparticles. We observed that the fluorescence behaviour of the CdS nanoparticles, prepared by precipitation technique, depends on excitation wavelength. It was found that the peak emission wavelength can be shifted by as much as 147nm by varyingthe excitation wavelengths and the reason for this phenomenon is the selective excitation of the surface states in the nanoparticles. This provided certain amount of tunability for the emission which results from surface states.TiO2 nanoparticle colloids were prepared by hydrothermal method. The optical absorption study showed a blue shift of absorption edge, indicating quantum confinement effect. The large spectral range investigated allows observing simultaneously direct and indirect band gap optical recombination. The emission studies carried out show four peaks, which are found to be generated from excitonic as well as surface state transitions. It was found that the emission wavelengths of these colloidal nanoparticles and annealed nanoparticles showed two category of surface state emission in addition to the excitonic emission. Au nanoparticles prepared by Turkevich method showed nanoparticles of size below 5nm using plasmonic absorption calculation. It was also found that there was almost no variation in size as the concentration of precursor was changed from 0.2mM to 0.4mM.We have observed SHG from CdS nanostructured thin film prepared onglass substrate by chemical bath deposition technique. The results point out that studied sample has in-plane isotropy. The relative values of tensor components of the second-order susceptibility were determined to be 1, zzz 0.14, xxz and 0.07. zxx These values suggest that the nanocrystals are oriented along the normal direction. However, the origin of such orientation remains unknown at present. Thus CdS is a promising nonlinear optical material for photonic applications, particularly for integrated photonic devices. CdS Au nanocomposite particles were prepared by mixing CdS nanoparticles with Au colloidal nanoparticles. Optical absorption study of these nanoparticles in PVA solution suggests that absorption tail was red shifted compared to CdS nanoparticles. TEM and EDS analysis suggested that the amount of Au nanoparticles present on CdS nanoparticles is very small. Fluorescence emission is unaffected indicating the presence of low level of Au nanoparticles. CdS:Au PVA and CdS PVA nanocomposite films were fabricated and optically characterized. The results showed a red-shift for CdS:Au PVA film for absorption tail compared to CdS PVA film. Nonlinear optical analysis showed a huge nonlinear optical absorption for CdS:Au PVA nanocomposite and CdS:PVA films. Also an enhancement in nonlinear optical absorption is found for CdS:Au PVA thin film compared to the CdS PVA thin film. This enhancement is due to the combined effect of plasmonic as well as excitonic contribution at high input intensity. Samples of CdS doped with TiO2 were also prepared and the linear optical absorption spectra of these nanocompositeparticles clearly indicated the influence of TiO2 nanoparticles. TEM and EDS studies have confirmed the presence of TiO2 on CdS nanoparticles. Fluorescence studies showed that there is an increase in emission peak around 532nm for CdS nanoparticles. Nonlinear optical analysis of CdS:TiO2 PVA nanocomposite films indicated a large nonlinear optical absorption compared to that of CdS:PVA nanocomposite film. The values of nonlinear optical absorption suggests that these nanocomposite particles can be employed for optical limiting applications. CdSe-CdS and CdSe-ZnS core-shell QDs with varying shell size were characterized using UV–VIS spectroscopy. Optical absorption and TEM analysis of these QDs suggested a particle size around 5 nm. It is clearly shown that the surface coating influences the optical properties of QDs in terms of their size. Fluorescence studies reveal the presence of trap states in CdSe-CdS and CdSe- ZnS QDs. Trap states showed an increase as a shell for CdS is introduced and increasing the shell size of CdS beyond a certain value leads to a decrease in the trap state emission. There is no sizeable nonlinear optical absorption observed. In the case of CdSe- ZnS QDs, the trap state emission gets enhanced with the increase in ZnS shell thickness. The enhancement of emission from trap states transition due to the increase in thickness of ZnS shell gives a clear indication of distortion occurring in the spherical symmetry of CdSe quantum dots. Consequently the nonlinear optical absorption of CdSe-ZnS QDs gets increased and the optical limiting threshold is decreased as the shell thickness is increased in respect of CdSe QDs. In comparison with CdSe-CdS QDs, CdSe-ZnS QDs possess much better optical properties and thereby CdSe-ZnS is a strong candidate for nonlinear as well as linear optical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mangroves are specialised ecosystems developed along estuarine sea coasts and river mouths in tropical and subtropical regions of the world, mainly in the intertidal zone. Hence, the ecosystem and its biological components is under the influence of both marine and freshwater conditions and has developed a set of physiological adaptations to overcome problems of anoxia, salinity and frequent tidal inundations. This has led to the assemblage of a wide variety of plant and animal species of special adaptations suited to the ecosystem. The path of photosynthesis in mangroves is different from other glycophytes. There are modifications or alterations in other physiological processes such as carbohydrate metabolism or polyphenol synthesis. As they survive under extreme conditions of salinity, temperature, tides and anoxic soil conditions they may have chemical compounds, which protect them from these destructive elements. Mangroves are necessarily tolerant of high salt levels and have mechanisms to take up water despite strong osmotic potentials. Some also take up salts, but excrete them through specialised glands in the leaves. Others transfer salts into senescent leaves or store them in the bark or the wood. Still others simply become increasingly conservative in their water use as water salinity increases. A usual transportation or biosynthetic path as other plants cannot be expected in mangrove plants. In India, the states like West Bengal, Orissa, Andhra Pradesh, Tamil Nadu, Andaman and Nicobar Islands, Kerala, Goa, Maharashtra, and Gujarat occupy vast area of mangroves. Kerala has only 6 km2 total mangrove area with Rhizophora apiculata, Rhizophora mucronata, Bruguiera gymnorrhiza, Bruguiera cylindrica, Avicennia officinalis, Sonneratia caseolaris, Sonneratia apetala and Kandelia candal, as the important species present, most of which belong to the family Rhizophoraceae.Rhizophoraceae mangroves are ranked as “major elements of mangroves” as they give the real shape of this unique and interesting ecosystem and these mangrove species most productive and typical characteristic ecosystem of World renowned. It was found that the Rhizophoraceae mangrove extracts exhibit several bioactive properties. Various parts of these mangroves are used in ethnomedicinal practices. Even though extracts from these mangroves possess therapeutic activity against humans, animal and plant pathogens, the specific metabolites responsible for these bioactivities remains to be elucidated. Various parts of these mangroves are used in ethnomedicinal practices. There is a gap of information towards the chemistry of Rhizophoraceae mangroves from Kerala. Thorough phytochemical investigation can achieve the validity of ethnomedicines as well as apply the use of mangrove plants in the development of new drugs. Such studies can pave a firm base for their use in biomarker and chemotaxonomic studies as well as for the better management of the existing mangrove ecosystem. In this study, the various chemical parameters including minerals, biochemical components, bioactive and biomarker molecules were used to classify and assess the possible potentials of the mangrove plants of the true mangrove family Rhizophoraceae from Kochi.