852 resultados para STRAIN-RATE DEPENDENCE
Resumo:
Fusarium equiseti is a toxigenic species that often contaminates ce real crops from diverse climatic regions such as Northern and Southern Europe. Previous results suggested the existence of two distinct populations within this species with differences in toxin pro file which largely corresponded to North and South Europe (Spain). In this work, growth rate profiles of 4 F. equiseti strains isolated from different cereals and distinct Spanish regions were determined on wheat and barley based media at a range of temperatures (15, 20, 25, 30, 35 and 40 °C) and water potentialregimens(−0.7,−2.8,−7.0,and −9.8MPa,correspondingto 0.99,0.98,0.95 and 0.93aw values).Growth was observed at all temperatures except at 40 °C, and at all the solute potential values except at−9.8 MPa when combined with 15 °C. Optimal growth was observed at 20– 30 °C and −0.7/−2.8 MPa. The effect of these factors on trichothecene biosynthesis was examined on a F. equiseti strain using a newly developed real time RT-PCR protocol to quantify TRI5 gene expression at 15, 25 and 35 °C and −0.7, −2.8, − 7.0 and −9.8 MPa on wheat and barley based media. Induction of TRI5 expression was detected between 25 and 35 °C and −0.7 and − 2.8 MPa, with maximum values at 35 °C and −2.8 MPa being higher in barley than in wheat medium. These results appeared to be consistent with a population well adapted to the present climatic conditions and predicted scenarios for Southern Europe and suggested some differences depending on the cereal considered. These are also discussed in relation to other Fusarium species co-occurring in cereals grown in this region and to their significance for prediction and control strategies of toxigenic risk in future scenarios of climate change for this region.
Resumo:
Fibrillogenesis of the amyloid β-protein (Aβ) is believed to play a central role in the pathogenesis of Alzheimer’s disease. Previous studies of the kinetics of Aβ fibrillogenesis showed that the rate of fibril elongation is proportional to the concentration of monomers. We report here the study of the temperature dependence of the Aβ fibril elongation rate constant, ke, in 0.1 M HCl. The rate of fibril elongation was measured at Aβ monomer concentrations ranging from 50 to 400 μM and at temperatures from 4°C to 40°C. Over this temperature range, ke increases by two orders of magnitude. The temperature dependence of ke follows the Arrhenius law, ke = A exp (−EA/kT). The preexponential factor A and the activation energy EA are ≈6 × 1018 liter/(mol·sec) and 23 kcal/mol, respectively. Such a high value of EA suggests that significant conformational changes are associated with the binding of Aβ monomers to fibril ends.
Resumo:
Kinesin is a dimeric motor protein that transports organelles in a stepwise manner toward the plus-end of microtubules by converting the energy of ATP hydrolysis into mechanical work. External forces can influence the behavior of kinesin, and force-velocity curves have shown that the motor will slow down and eventually stall under opposing loads of ≈5 pN. Using an in vitro motility assay in conjunction with a high-resolution optical trapping microscope, we have examined the behavior of individual kinesin molecules under two previously unexplored loading regimes: super-stall loads (>5 pN) and forward (plus-end directed) loads. Whereas some theories of kinesin function predict a reversal of directionality under high loads, we found that kinesin does not walk backwards under loads of up to 13 pN, probably because of an irreversible transition in the mechanical cycle. We also found that this cycle can be significantly accelerated by forward loads under a wide range of ATP concentrations. Finally, we noted an increase in kinesin’s rate of dissociation from the microtubule with increasing load, which is consistent with a load dependent partitioning between two recently described kinetic pathways: a coordinated-head pathway (which leads to stepping) and an independent-head pathway (which is static).
Resumo:
The anomalous temperature dependence of protein folding has received considerable attention. Here we show that the temperature dependence of the folding of protein L becomes extremely simple when the effects of temperature on protein stability are corrected for; the logarithm of the folding rate is a linear function of 1/T on constant stability contours in the temperature–denaturant plane. This convincingly demonstrates that the anomalous temperature dependence of folding derives from the temperature dependence of the interactions that stabilize proteins, rather than from the super Arrhenius temperature dependence predicted for the configurational diffusion constant on a rough energy landscape. However, because of the limited temperature range accessible to experiment, the results do not rule out models with higher order temperature dependences. The significance of the slope of the stability-corrected Arrhenius plots is discussed.
Resumo:
Exposure of cells of cyanobacteria (blue–green algae) grown under high-CO2 conditions to inorganic C-limitation induces transcription of particular genes and expression of high-affinity CO2 and HCO3− transport systems. Among the low-CO2-inducible transcription units of Synechococcus sp. strain PCC 7942 is the cmpABCD operon, encoding an ATP-binding cassette transporter similar to the nitrate/nitrite transporter of the same cyanobacterium. A nitrogen-regulated promoter was used to selectively induce expression of the cmpABCD genes by growth of transgenic cells on nitrate under high CO2 conditions. Measurements of the initial rate of HCO3− uptake after onset of light, and of the steady-state rate of HCO3− uptake in the light, showed that the controlled induction of the cmp genes resulted in selective expression of high-affinity HCO3− transport activity. The forced expression of cmpABCD did not significantly increase the CO2 uptake capabilities of the cells. These findings demonstrated that the cmpABCD genes encode a high-affinity HCO3− transporter. A deletion mutant of cmpAB (M42) retained low CO2-inducible activity of HCO3− transport, indicating the occurrence of HCO3− transporter(s) distinct from the one encoded by cmpABCD. HCO3− uptake by low-CO2-induced M42 cells showed lower affinity for external HCO3− than for wild-type cells under the same conditions, showing that the HCO3− transporter encoded by cmpABCD has the highest affinity for HCO3− among the HCO3− transporters present in the cyanobacterium. This appears to be the first unambiguous identification and description of a primary active HCO3− transporter.
Resumo:
The mutagenic effect of low linear energy transfer ionizing radiation is reduced for a given dose as the dose rate (DR) is reduced to a low level, a phenomenon known as the direct DR effect. Our reanalysis of published data shows that for both somatic and germ-line mutations there is an opposite, inverse DR effect, with reduction from low to very low DR, the overall dependence of induced mutations being parabolically related to DR, with a minimum in the range of 0.1 to 1.0 cGy/min (rule 1). This general pattern can be attributed to an optimal induction of error-free DNA repair in a DR region of minimal mutability (MMDR region). The diminished activation of repair at very low DRs may reflect a low ratio of induced (“signal”) to spontaneous background DNA damage (“noise”). Because two common DNA lesions, 8-oxoguanine and thymine glycol, were already known to activate repair in irradiated mammalian cells, we estimated how their rates of production are altered upon radiation exposure in the MMDR region. For these and other abundant lesions (abasic sites and single-strand breaks), the DNA damage rate increment in the MMDR region is in the range of 10% to 100% (rule 2). These estimates suggest a genetically programmed optimatization of response to radiation in the MMDR region.
Resumo:
We studied single molecular interactions between surface-attached rat CD2, a T-lymphocyte adhesion receptor, and CD48, a CD2 ligand found on antigen-presenting cells. Spherical particles were coated with decreasing densities of CD48–CD4 chimeric molecules then driven along CD2-derivatized glass surfaces under a low hydrodynamic shear rate. Particles exhibited multiple arrests of varying duration. By analyzing the dependence of arrest frequency and duration on the surface density of CD48 sites, it was concluded that (i) arrests were generated by single molecular bonds and (ii) the initial bond dissociation rate was about 7.8 s−1. The force exerted on bonds was increased from about 11 to 22 pN; the detachment rate exhibited a twofold increase. These results agree with and extend studies on the CD2–CD48 interaction by surface plasmon resonance technology, which yielded an affinity constant of ≈104 M−1 and a dissociation rate of ≥6 s−1. It is concluded that the flow chamber technology can be an useful complement to atomic force microscopy for studying interactions between isolated biomolecules, with a resolution of about 20 ms and sensitivity of a few piconewtons. Further, this technology might be extended to actual cells.
Resumo:
Factors that affect naïve T cell proliferation in syngeneic lymphopenic hosts were investigated. 2C T cell receptor (TCR) transgenic T cells lacking both CD8 and CD4 survived but hardly proliferated. Proliferation of CD8+ 2C cells was proportional to the abundance of cognate peptide/MHC complexes and was severely inhibited by injection of anti-CD8 antibody. Weakly reactive self-peptides slightly enhanced CD8+ 2C cell proliferation whereas a potent agonist peptide promoted much more rapid proliferation, but inflammation-stimulating adjuvant had only a small effect on the rate of cell proliferation. The findings suggest that under uniform lymphopenic conditions, the widely different rates of proliferation of T cells expressing various TCR, or the same TCR in the presence or absence of CD8, reflect the strength of interaction between TCR and MHC associated with particular self-peptides.
Resumo:
Ewes from the Booroola strain of Australian Mérino sheep are characterized by high ovulation rate and litter size. This phenotype is due to the action of the FecBB allele of a major gene named FecB, as determined by statistical analysis of phenotypic data. By genetic analysis of 31 informative half-sib families from heterozygous sires, we showed that the FecB locus is situated in the region of ovine chromosome 6 corresponding to the human chromosome 4q22–23 that contains the bone morphogenetic protein receptor IB (BMPR-IB) gene encoding a member of the transforming growth factor-β (TGF-β) receptor family. A nonconservative substitution (Q249R) in the BMPR-IB coding sequence was found to be associated fully with the hyperprolificacy phenotype of Booroola ewes. In vitro, ovarian granulosa cells from FecBB/FecBB ewes were less responsive than granulosa cells from FecB+/FecB+ ewes to the inhibitory effect on steroidogenesis of GDF-5 and BMP-4, natural ligands of BMPR-IB. It is suggested that in FecBB/FecBB ewes, BMPR-IB would be inactivated partially, leading to an advanced differentiation of granulosa cells and an advanced maturation of ovulatory follicles.
Resumo:
Recent experiments have measured the rate of replication of DNA catalyzed by a single enzyme moving along a stretched template strand. The dependence on tension was interpreted as evidence that T7 and related DNA polymerases convert two (n = 2) or more single-stranded template bases to double helix geometry in the polymerization site during each catalytic cycle. However, we find structural data on the T7 enzyme–template complex indicate n = 1. We also present a model for the “tuning” of replication rate by mechanical tension. This model considers only local interactions in the neighborhood of the enzyme, unlike previous models that use stretching curves for the entire polymer chain. Our results, with n = 1, reconcile force-dependent replication rate studies with structural data on DNA polymerase complexes.
Resumo:
Flash photolysis and pulse radiolysis measurements demonstrate a conformational dependence of electron transfer rates across a 16-mer helical bundle (three-helix metalloprotein) modified with a capping CoIII(bipyridine)3 electron acceptor at the N terminus and a 1-ethyl-1'-ethyl-4,4'- bipyridinium donor at the C terminus. For the CoIII(peptide)3-1-ethyl-1'-ethyl-4,4'-bipyridinium maquettes, the observed transfer is a first order, intramolecular process, independent of peptide concentration or laser pulse energy. In the presence of 6 M urea, the random coil bundle (approximately 0% helicity) has an observed electron transfer rate constant of kobs = 900 +/- 100 s-1. In the presence of 25% trifluoroethanol (TFE), the helicity of the peptide is 80% and the kobs increases to 2000 +/- 200 s-1. Moreover, the increase in the rate constant in TFE is consistent with the observed decrease in donor-acceptor distance in this solvent. Such bifunctional systems provide a class of molecules for testing the effects of conformation on electron transfer in proteins and peptides.
Resumo:
The recent discovery of a low-velocity, low-Q zone with a width of 50-200 m reaching to the top of the ductile part of the crust, by observations on seismic guided waves trapped in the fault zone of the Landers earthquake of 1992, and its identification with the shear zone inferred from the distribution of tension cracks observed on the surface support the existence of a characteristic scale length of the order of 100 m affecting various earthquake phenomena in southern California, as evidenced earlier by the kink in the magnitude-frequency relation at about M3, the constant corner frequency for earthquakes with M below about 3, and the sourcecontrolled fmax of 5-10 Hz for major earthquakes. The temporal correlation between coda Q-1 and the fractional rate of occurrence of earthquakes in the magnitude range 3-3.5, the geographical similarity of coda Q-1 and seismic velocity at a depth of 20 km, and the simultaneous change of coda Q-1 and conductivity at the lower crust support the hypotheses that coda Q-1 may represent the activity of creep fracture in the ductile part of the lithosphere occurring over cracks with a characteristic size of the order of 100 m. The existence of such a characteristic scale length cannot be consistent with the overall self-similarity of earthquakes unless we postulate a discrete hierarchy of such characteristic scale lengths. The discrete hierarchy of characteristic scale lengths is consistent with recently observed logarithmic periodicity in precursory seismicity.
Resumo:
Both strain and damage sensing properties on carbon nanofiber cement composites (CNFCC) are reported in the present paper. Strain sensing tests were first made on the material’s elastic range. The applied loading levels have been previously calculated from mechanical strength tests. The effect of several variables on the strain-sensing function was studied, e.g. cement pastes curing age, current density, loading rate or maximum stress applied. All these parameters were discussed using the gage factor as reference. After this first set of elastic experiments, the same specimens were gradually loaded until material’s failure. At the same time both strain and resistivity were measured. The former was controlled using strain gages, and the latter using a multimeter on a four probe setup. The aim of these tests was to prove the sensitivity of these CNF composites to sense their own damage, i.e. check the possibility of fabricating structural damage sensors with CNFCC’s. All samples with different CNF dosages showed good strain-sensing capacities for curing periods of 28 days. Furthermore, a 2%CNF reinforced cement paste has been sensitive to its own structural damage.
Resumo:
Implant failures and postoperative complications are often associated to the bone drilling. Estimation and control of drilling parameters are critical to prevent mechanical damage to the bone tissues. For better performance of the drilling procedures, it is essential to understand the mechanical behaviour of bones that leads to their failures and consequently to improve the cutting conditions. This paper investigates the effect of drill speed and feed-rate on mechanical damage during drilling of solid rigid foam materials, with similar mechanical properties to the human bone. Experimental tests were conducted on biomechanical blocks instrumented with strain gauges to assess the drill speed and feed-rate influence. A three-dimensional dynamic finite element model to predict the bone stresses, as a function of drilling conditions, drill geometry and bone model, was developed. These simulations incorporate the dynamic characteristics involved in the drilling process. The element removal scheme is taken into account and allows advanced simulations of tool penetration and material removal. Experimental and numerical results show that generated stresses in the material tend to increase with tool penetration. Higher drill speed leads to an increase of von-Mises stresses and strains in the solid rigid foams. However, when the feed-rate is higher, the stresses and strains are lower. The numerical normal stresses and strains are found to be in good agreement with experimental results. The models could be an accurate analysis tool to simulate the stresses distribution in the bone during the drilling process.
Resumo:
We perform density functional calculations to investigate the structure of the intermetallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to a ferromagnetic phase at 350 K, and its strain dependence is of interest for tuning the transition temperature to the room-temperature operating conditions of typical memory devices. We find an unusually strong dependence of the structural energetics on the choice of exchange-correlation functional, with the usual local density approximation yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in better agreement with the bulk experimental structure. Using the GGA we show the existence of a metastable face-centered-cubic-like AFM structure that is reached from the ground-state body-centered-cubic-like AFM structure by following the epitaxial Bain path. We show that the behavior is well described using nonlinear elasticity theory, which captures the softening and eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice instability, which should be observable at low temperature.