946 resultados para STM - Scanning Tunneling Microscope


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic nicotine delivery systems (ENDS) use has recently grown. E-cig generates carcinogenic chemical compounds and reactive oxygen species (ROS). Carbonyls and ROS are formed when the liquid comes into contact with the heating element. In this study the chemical and biological effects of coil resistance applied on the same device were investigated. A preliminary in-vivo study the new heat-not-burn devices (IQOS®) has been conducted to evaluate the effect of the device on antioxidant biomarkers. The amount of formaldehyde, acetaldehyde, acrolein was measured by GC-MS analysis. The two e-liquids used for carbonyls detection differed only for the presence of nicotine. The nicotine-free liquid was then used for the detection of ROS in the aerosol. The impact of the non-nicotine vapor on cell viability in H1299 human lung carcinoma cells, as well as the biological effects in a rat model of e-cig aerosol exposure, were also evaluated. After the exposure of Sprague Dawley rats to e-cig and IQOS® aerosol, the effect of 28-day treatment was examined on enzymatic and non-enzymatic antioxidant response, lung inflammation, blood homeostasis and tissue damage by using scanning electron microscope (SEM) technique. The results show a significant correlation between the low resistance and the generation of higher concentrations of the selected carbonyls and ROS in aerosols. Cell viability was reduced with an inverse relation to coil resistance. The experimental model highlighted an impairment of the pulmonary antioxidant and detoxifying machinery. Frames from SEM show disorganization of alveolar and bronchial epithelium. IQOS® exposed animals shows a significant production of ROS related to the unbalance of antioxidant defense and alteration of macromolecule integrity. This research demonstrates how several toxicological aspects can potentially occur in e-cig consumers who use low resistance device coupled with nicotine-free liquid. ENDS may expose users to hazardous compounds, which, may promote chronic pathologies and degenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of adhesives to join two different substrates is an efficient replacement to classic joining technologies such as welding and soldering. One the one hand adhesion has different advantages over those techniques such as an improved stress distribution and the potential weight reduction of the structure; on the other hand, two of the most important drawbacks are a relatively low fracture toughness and the need of an accurate surface preparation. These two aspects will be accurately analysed in the present work: the use of Nylon nanofibers as reinforcement for the adhesive should increase fracture toughness, while a surface preparation method consisting of mechanical and chemical treatments will be developed. After the specimens are produced, they will be tested in mode I fracture using a DCB (Double Beam Cantilever) test, which allows to measure the fracture toughness during crack propagation. At the end of the test, the surfaces of the adherends will be visually observed and SEM (Scanning Electronic Microscope) analysed in order to evaluate if adhesive or cohesive fracture occurred, and thus if surface treatments has been well developed to allow a better adhesive-aluminium joining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agricultural sector is undoubtedly one of the sectors that has the greatest impact on the use of water and energy to produce food. The circular economy allows to reduce waste, obtaining maximum value from products and materials, through the extraction of all possible by-products from resources. Circular economy principles for agriculture include recycling, processing, and reusing agricultural waste in order to produce bioenergy, nutrients, and biofertilizers. Since agro-industrial wastes are principally composed of lignin, cellulose, and hemicellulose they can represent a suitable substrate for mushroom growth and cultivation. Mushrooms are also considered healthy foods with several medicinal properties. The thesis is structured in seven chapters. In the first chapter an introduction on the water, energy, food nexus, on agro-industrial wastes and on how they can be used for mushroom cultivation is given. Chapter 2 details the aims of this dissertation thesis. In chapters three and four, corn digestate and hazelnut shells were successfully used for mushroom cultivation and their lignocellulosic degradation capacity were assessed by using ATR-FTIR spectroscopy. In chapter five, through the use of the Surface-enhanced Raman Scattering (SERS) spectroscopy was possible to set-up a new method for studying mushroom composition and for identifying different mushroom species based on their spectrum. In chapter six, the isolation of different strains of fungi from plastic residues collected in the fields and the ability of these strains to growth and colonizing the Low-density Polyethylene (LDPE) were explored. The structural modifications of the LDPE, by the most efficient fungal strain, Cladosporium cladosporioides Clc/1 strain were monitored by using the Scanning Electron Microscope (SEM) and ATR-FTIR spectroscopy. Finally, chapter seven outlines the conclusions and some hints for future works and applications are provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors describe a novel approach to the measurement of nanofriction, and demonstrate the application of the method by measurement of the coefficient of friction for diamondlike carbon (DLC) on DLC, Si on DLC, and Si on Si surfaces. The technique employs an atomic force microscope in a mode in which the tip moves only in the z (vertical) direction and the sample surface is sloped. As the tip moves vertically on the sloped surface, lateral tip slipping occurs, allowing the cantilever vertical deflection and the frictional (lateral) force to be monitored as a function of tip vertical deflection. The advantage of the approach is that cantilever calibration to obtain its spring constants is not necessary. Using this method, the authors have measured friction coefficients, for load range 0 < L M 6 mu N, of 0.047 +/- 0.002 for Si on Si, 0.0173 +/- 0.0009 for Si on DLC, and 0.0080 +/- 0.0005 for DLC on DLC. For load range 9 < L < 13 mu N, the DLC on DLC coefficient of friction increased to 0.051 +/- 0.003. (C) 2008 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Aim To evaluate by 3D profilometry and scanning electron microscopy (SEM), the marginal adaptation of mineral trioxide aggregate (MTA) and Sealer 26 placed in root-end cavities with direct vision or under an optical microscope. Methodology The root ends of 52 root filled canine teeth were filled with MTA or Sealer 26 under direct vision or optical microscope (n = 13). In each group, eight specimens were analysed by profilometry for measurement of the area and depth of gaps. In the other five specimens, gap area was measured using SEM to verify marginal adaptation and surface characteristic. Data were analysed by parametric (anova and Tukey) and non-parametric (Kruskal-Wallis and Dunn) tests. Results The assessment of the adaptation of both materials to dentine was not influenced by the mode of visualization, which was confirmed by both profilometry and SEM observations. The voids measured with profilometry for Sealer 26 under direct vision were significantly wider and deeper than those for MTA under direct vision (P < 0.05). In SEM, significantly larger gap areas were observed with Sealer 26 (P < 0.05). Conclusion Root-end cavities filled with MTA had smaller gaps and better marginal adaptation than Sealer 26.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aiming to detail data obtained through brightfield microscopy (BM) on reproductive, excretory and digestive system, specimens of Schistosoma mansoni eight weeks old, were recovered from SW mice, stained with Langeron's carmine and analyzed under a confocal laser scanning microscope CLSM 410 (Carl Zeiss). The reproductive system presented a single and lobate testis, with intercommunications between the lobes without efferent duct. Supernumerary testicular lobe was amorphous and isolated from the normal ones. Collecting tubules (excretory ducts), followed by the excretory bladder, opening to the external media through the excretory pore, were observed at the posterior extremity of the body. In the digestive tract, a cecal swelling was noted at the junction that originates the single cecum. It was concluded that through confocal laser scanning microscopy, new interpretations of morphological structures of S. mansoni worms could be achieved, modifying adopted and current descriptions. The gonad consists of a single lobed testis, similar to that observed in some trematode species. Moreover, the same specimens can be observed either by BM or CLSM, considering that the latter causes only focal and limited damage in tissue structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L?objectif de ce travail de thèse est l?étude des changements conformationels des biomacromolecules à l?échelle d?une molécule unique. Pour cela on a utilisé la Microscopie à Force Atomique (AFM) appliqué à l?étude des protéines et des acides nucléiques déposés sur une surface. Dans ce type de microscopie, une pointe très fine attachée à l?extrémité d?un levier est balayée au dessus d?une surface. L?interaction de la pointe avec la surface de l?échantillon induit la déflection du levier et ce phénomène permet de reconstruire la topographie de l?échantillon. Très importante dans cette technique est la possibilité de travailler en liquide. Cela permet de étudier les biomolécules en conditions quasi-physiologiques sans qu?elles perdent leur activité. On a étudié GroEL, la chaperonin de E.coli, qui est un homo oligomère avec une structure à double anneau qui joue un rôle très important dans le repliement des protéines dénaturées et celles qui viennent d?être synthétisées. En particulier on a focalisé notre attention sur la stabilité mécanique et sur les changements conformationels qui ont lieu pendant l?activité de GroEL. Une analyse détaillée des changements dans la stabilité mécanique et des effets produits par la liaison et l?hydrolyse de l?ATP est présentée dans ce travail. On a montré que le point le plus faible dans la structure de GroEL est l?interface entre les deux anneaux et que l?étape critique dans l?affaiblissement de la structure est l?hydrolyse de l?ATP. En ce qui concerne le changement conformationel, le passage d?une surface hydrophobe à hydrophile, induit par l?hydrolyse de l?ATP, a été montré. Ensuite on a étudié le changement dans la conformation et dans la topologie de l?ADN résultant de l?interaction avec des molécules spécifiques et en réponse à l?exposition des cellules de E.coli à des conditions de stress. Le niveau de surenroulement est un paramètre très sensible, de façon variée, à tous ces facteurs. Les cellules qui ont crus à de températures plus élevées que leur température optimale ont la tendance à diminuer le nombre de surenroulements négatif pour augmenter la stabilité thermique de leur plasmides. L?interaction avec des agents intercalant induit une transition d?un surenroulement négatif à un surenroulement positif d?une façon dépendante de la température. Finalement, l?effet de l?interaction de l?ADN avec des surfaces différentes a été étudié et une application pratique sur les noeuds d?ADN est présentée.<br/><br/>The aim of the present thesis work is to study the conformational changes of biomacromolecules at the single molecule level. To that end, Atomic Force Microcopy (AFM) imaging was performed on proteins and nucleic acids adsorbed onto a surface. In this microcopy technique a very sharp tip attached at the end of a soft cantilever is scanned over a surface, the interaction of the tip with the sample?s surface will induce the deflection of the cantilever and thus it will make possible to reconstruct the topography. A very important feature of AFM is the possibility to operate in liquid, it means with the sample immersed in a buffer solution. This allows one to study biomolecules in quasi-physiological conditions without loosing their activity. We have studied GroEL, the chaperonin of E.coli, which is a double-ring homooligomer which pays a very important role in the refolding of unfolded and newly synthetized polypeptides. In particular we focus our attention on its mechanical stability and on the conformational change that it undergoes during its activity cycle. A detailed analysis of the change in mechanical stability and how it is affected by the binding and hydrolysis of nucleotides is presented. It has been shown that the weak point of the chaperonin complex is the interface between the two rings and that the critical step to weaken the structure is the hydrolysis of ATP. Concerning the conformational change we have directly measured, with a nanometer scale resolution, the switching from a hydrophobic surface to a hydrophilic one taking place inside its cavity induced by the ATP hydrolysis. We have further studied the change in the DNA conformation and topology as a consequence of the interaction with specific DNA-binding molecules and the exposition of the E.coli cells to stress conditions. The level of supercoiling has been shown to be a very sensitive parameter, even if at different extents, to all these factors. Cells grown at temperatures higher than their optimum one tend to decrease the number of the negative superhelical turns in their plasmids in order to increase their thermal stability. The interaction with intercalating molecules induced a transition from positive to negative supercoiling in a temperature dependent way. The effect of the interaction of the DNA with different surfaces has been investigated and a practical application to DNA complex knots is reported.<br/><br/>Observer les objets biologiques en le touchant Schématiquement le Microscope a Force Atomique (AFM) consiste en une pointe très fine fixée a l?extrémité d?un levier Lors de l?imagerie, la pointe de l?AFM gratte la surface de l?échantillon, la topographie de celui-ci induit des déflections du levier qui sont enregistrées au moyen d?un rayon laser réfléchi par le levier. Ces donnés sont ensuit utilisés par un ordinateur pour reconstituer en 3D la surface de l?échantillon. La résolution de l?instrument est fonction entre autre de la dureté, de la rugosité de l?échantillon et de la forme de la pointe. Selon l?échantillon et la pointe utilisée la résolution de l?AFM peut aller de 0.1 A (sur des cristaux) a quelque dizaine de nanomètres (sur des cellules). Cet instrument est particulierment intéressant en biologie en raison de sa capacité à imager des échantillons immergés dans un liquide, c?est à dire dans des conditions quasiphysiologiques. Dans le cadre de ce travail nous avons étudié les changements conformationels de molécules biologiques soumises à des stimulations externes. Nous avons essentielment concentré notre attention sur des complexes protéiques nommé Chaperons Moléculaires et sur des molécules d?ADN circulaire (plasmides). Les Chaperons sont impliqués entre autre dans la résistance des organismes vivants aux stress thermiques et osmotiques. Leur activité consiste essentielment à aider les autres protéines à être bien pliés dans leur conformation finale et, en conséquence, à eviter que ils soient dénaturées et que ils puissent s?agréger. L?ADN, quant à lui est la molécule qui conserve, dans sa séquence, l?information génétique de tous les organismes vivants. Ce travail a spécifiquement concerné l?étude des changements conformationels des chaperonins suit a leur activation par l?ATP. Ces travaux ont montrés a l?échelle de molécule unique la capacité de ces protéines de changer leur surface de hydrophobique a hydrophilique. Nous avons également utilisé l?AFM pour étudier le changement du nombre des surenroulements des molécules d?ADN circulaire lors d?une exposition à un changement de température et de force ionique. Ces travaux ont permis de montrer comment la cellule regle le nombre de surenroulements dans ces molécules pour répondre et contrôler l?expression génétique même dans de conditions extrêmes. Pour les deux molécules en général, c?était très important d?avoir la possibilité de observer leur transitions d?une conformation a l?autre directement a l?échelle d?une seul molécule et, surtout, avec une résolution largement au dessous des la longueur d?onde de la lumière visible que représente le limite pour l?imagerie optique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication we review the results obtained with the confocal laser scanning microscope to characterize the interaction of epimastigote and trypomastigote forms of Trypanosoma cruzi and tachyzoites of Toxoplasma gondii with host cells. Early events of the interaction process were studied by the simultaneous localization of sites of protein phosphorylation, revealed by immunocytochemistry, and sites of actin assembly, revealed by the use of labeled phaloidin. The results obtained show that proteins localized in the interaction sites are phosphorylated. The process of formation of the parasitophorous vacuole was monitored by labeling the host cell surface with fluorescent probes for lipids (PKH26), proteins (DTAF) and sialic acid (FITC-thiosemicarbazide) before interaction with the parasites. Evidence was obtained indicating transfer of components of the host cell surface to the parasite surface in the beginning of the interaction process. We also analyzed the distribution of cytoskeletal structures (microtubules and microfilaments visualized with specific antibodies), mitochondria (visualized with rhodamine 123), the Golgi complex (visualized with C6-NBD-ceramide) and the endoplasmic reticulum (visualized with anti-reticulin antibodies and DIOC6) during the evolution of intracellular parasitism. The results obtained show that some, but not all, structures change their position during evolution of the intracellular parasitism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional electronic systems play a crucial role in modern electronics and offer a multitude of opportunities to study the fundamental phenomena at low dimensional physics. A quantum well heterostructure based on polyaniline (P) and iodine doped polyaniline (I) thin films were fabricated using radio frequency plasma polymerization on indium tin oxide coated glass plate. Scanning probe microscopy and scanning electron microscopy studies were employed to study the morphology and roughness of the polymer thin films. Local electronic density of states (LDOS) of the P–I–P heterostructures is probed using scanning tunnelling spectroscopy (STS). A step like LDOS is observed in the P–I–P heterostructure and is attributed to the quantum well confinement of electrons in the polymer heterostructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on the use of hemotoxylin-eosin staining plus fluorescence microscopy for the investigation of elastic fibers in some elastic cartilages. We have observed that elastic fibers are consistently imaged by the proposed procedure and the resolution attained is similar to that obtained with the classical Weigert's fuchsin-resorcin. The results also demonstrate that elastin autofluorescence gives little or no contribution to the final fluorescence and that the use of the confocal laser scanning microscope adds to the resolution, permits the use of thicker sections and reveals of minute structural features. We conclude that this is a relevant tool in elastin research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the possibility of associating fluorescence microscopy and hematoxylin-eosin staining for the identification of elastic fibers in elastin-rich tissues. Elastic fibers and elastic laminae were consistently identified by the proposed procedure, which revealed itself to be easy and useful for the determination of such structures and their distribution. The fluorescence properties of stained elastic fibers are due to eosin staining as revealed by fluorescence analysis of the dye in solution, with no or only minor contribution by the elastin autofluorescence. The main advantage of this technique resides in the possibility of studying the distribution of elastic fibers in file material without further sectioning and staining. The use of the confocal laser scanning microscope greatly improved the resolution and selectivity of imaging elastic fibers in different tissues. The determination of the three-dimensional distribution and structure of elastic fiber and laminae using the confocal laser scanning microscope was evaluated and also produced excellent results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)