932 resultados para STATIONARY PHASES
Resumo:
Geometric phases of scattering states in a ring geometry are studied on the basis of a variant of the adiabatic theorem. Three timescales, i.e., the adiabatic period, the system time and the dwell time, associated with adiabatic scattering in a ring geometry play a crucial role in determining geometric phases, in contrast to only two timescales, i.e., the adiabatic period and the dwell time, in an open system. We derive a formula connecting the gauge invariant geometric phases acquired by time-reversed scattering states and the circulating (pumping) current. A numerical calculation shows that the effect of the geometric phases is observable in a nanoscale electronic device.
Resumo:
Experiments for the investigation of the flow of granular solids in a pyrolysis pilot-scale rotary kiln are presented. These experiments consisted first in measuring the volumetric filling ratio (steady-state experiences) for several operating conditions and second in recording the exit flow rates after a positive or negative step in one of the operating parameters (dynamic experiences). A dynamical model computing the evolution of the flow rate of granular solids through the kiln has been developed based on Saeman model [Chem. Eng. Prog. 47 (1951) 508]. The simulations are compared with experimental results; the model gives good results for the rolling mode, but for the slipping mode too. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Many populations have a negative impact on their habitat or upon other species in the environment if their numbers become too large. For this reason they are often subjected to some form of control. One common control regime is the reduction regime: when the population reaches a certain threshold it is controlled (for example culled) until it falls below a lower predefined level. The natural model for such a controlled population is a birth-death process with two phases, the phase determining which of two distinct sets of birth and death rates governs the process. We present formulae for the probability of extinction and the expected time to extinction, and discuss several applications. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Introduction: Walking programmes are recommended as part of the initial treatment for intermittent claudication (IC). However, for many patients factors such as frailty, the severe leg discomfort associated with walking and safety concerns about exercising in public areas reduce compliance to such prescription. Thus, there is a need to identify a mode of exercise that provides the same benefits as regular walking while also offering convenience and comfort for these patients. The present study aims to provide evidence for the first time of the efficacy of a supervised cycle training programme compared with a conventional walking programme for the treatment of IC. Methods: Thus far 33 patients have been randomized to: a treadmill-training group (n = 12); a cycle-training group (n = 11); or a control group (n = 10). Training groups participated in three sessions of supervised training per week for a period of 6 weeks. Control patients received no experimental intervention. Maximal incremental treadmill testing was performed at baseline and after the 6 weeks of training. Measures included pain-free (PFWT) and maximal walking time (MWT), continuous heart rate and gas-analysis recording, and ankle-brachial index assessment. Results: In the treadmill trained group MWT increased significantly from 1016.7 523.7 to 1255.2 432.2 s (P < 0.05). MWT tended to increase with cycle training (848.72 333.18 to 939.54 350.35 s, P = 0.14), and remained unchanged in the control group (1555.1 683.23 to 1534.7 689.87 s). For PFWT, there was a non-significant increase in the treadmill-training group from 414.4 262.3 to 592.9 381.9 s, while both the cycle training and control groups displayed no significant change in this time (226.7 147.1 s to 192.3 56.8 and 499.4 503.7 s to 466.0 526.1 s, respectively). Conclusions: These preliminary results might suggest that, unlike treadmill walking, cycling has no clear effect on walking performance in patients with IC. Thus the current recommendations promoting walking based programmes appear appropriate. The present study was funded by the National Heart Foundation of Australia.
Resumo:
This paper reports preliminary progress on a principled approach to modelling nonstationary phenomena using neural networks. We are concerned with both parameter and model order complexity estimation. The basic methodology assumes a Bayesian foundation. However to allow the construction of pragmatic models, successive approximations have to be made to permit computational tractibility. The lowest order corresponds to the (Extended) Kalman filter approach to parameter estimation which has already been applied to neural networks. We illustrate some of the deficiencies of the existing approaches and discuss our preliminary generalisations, by considering the application to nonstationary time series.
Resumo:
In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Using electricity load data and training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise and forgetting factors for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. We also find that a recently-proposed alternative novelty criterion, found to be more robust in stationary environments, does not fare so well in the non-stationary case due to the need for filter adaptability during training.
Resumo:
Recently, we introduced a new 'GLM-beamformer' technique for MEG analysis that enables accurate localisation of both phase-locked and non-phase-locked neuromagnetic effects, and their representation as statistical parametric maps (SPMs). This provides a useful framework for comparison of the full range of MEG responses with fMRI BOLD results. This paper reports a 'proof of principle' study using a simple visual paradigm (static checkerboard). The five subjects each underwent both MEG and fMRI paradigms. We demonstrate, for the first time, the presence of a sustained (DC) field in the visual cortex, and its co-localisation with the visual BOLD response. The GLM-beamformer analysis method is also used to investigate the main non-phase-locked oscillatory effects: an event-related desynchronisation (ERD) in the alpha band (8-13 Hz) and an event-related synchronisation (ERS) in the gamma band (55-70 Hz). We show, using SPMs and virtual electrode traces, the spatio-temporal covariance of these effects with the visual BOLD response. Comparisons between MEG and fMRI data sets generally focus on the relationship between the BOLD response and the transient evoked response. Here, we show that the stationary field and changes in oscillatory power are also important contributors to the BOLD response, and should be included in future studies on the relationship between neuronal activation and the haemodynamic response. © 2005 Elsevier Inc. All rights reserved.