838 resultados para SPRAY-PYROLYSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its formation are not fully understood or agreed upon in the literature. In this research, the method of pyrolysis of boron tribromide (hydrogen reduction of boron tribromide) was used to deposit boron on a tantalum filament. The goal was to refine this method, or potentially use it in combination with a second method (amorphous boron crystallization), to the point where it is possible to grow large, high purity alpha-rhombohedral boron crystals with consistency. A pyrolysis apparatus was designed and built, and a number of trials were run to determine the conditions (reaction temperature, etc.) necessary for alpha-rhombohedral boron production. This work was focused on the x-ray diffraction analysis of the boron deposits; x-ray diffraction was performed on a number of samples to determine the types of boron (and other compounds) formed in each trial and to guide the choices of test conditions for subsequent trials. It was found that at low reaction temperatures (in the range of around 830-950 °C), amorphous boron was the primary form of boron produced. Reaction temperatures in the range of around 950-1000 °C yielded various combinations of crystalline boron and amorphous boron. In the first trial performed at a temperature of 950 °C, a mix of amorphous boron and alpha-rhombohedral boron was formed. Using a scanning electron microscope, it was possible to see small alpha-rhombohedral boron crystals (on the order of ~1 micron in size) embedded in the surface of the deposit. In subsequent trials carried out at reaction temperatures in the range of 950 °C – 1000 °C, it was found that various combinations of alpha-rhombohedral boron, beta-rhombohedral boron, and amorphous boron were produced; the results tended to be unpredictable (alpha-rhombohedral boron was not produced in every trial), and the factors leading to success/failure were difficult to pinpoint. These results illustrate how sensitive of a process producing alpha-rhombohedral boron can be, and indicate that further improvements to the test apparatus and test conditions (for example, higher purity/cleanliness) may be necessary to optimize the boron deposition. Although alpha-rhombohedral boron crystals of large size were not achieved, this research was successful in (a) developing a pyrolysis apparatus and test procedure that can serve as a platform for future testing, (b) determining reaction temperatures at which alpha-rhombohedral boron can form, and (c) developing a consistent process for analyzing the boron deposits and determining their composition. Further experimentation is necessary to achieve a pyrolysis apparatus and test procedure that can yield large alpha-rhombohedral boron crystals with consistency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of core samples taken during Cruise 79 of Glomar Challenger, drilling offshore Morocco (Mazagan Plateau), is analyzed for their low-molecular-weight hydrocarbon contents. Fifty-four samples from DSDP Holes 544A, 545, 547A, and 547B, deep frozen on board immediately after recovery, are studied by a hydrogen-stripping/thermovaporization technique combined with capillary gas chromatography. Thirty-eight compounds in the C2-C8 molecular range, including saturated, olefinic, and aromatic hydrocarbons, are identified. Because of large differences in organic carbon contents, the total C2-C8 hydrocarbon concentrations vary from about 20 to 1500 ng/g dry sediment weight in the whole sample series. Organic-carbon normalized values are about 3.2 x 10**4 ng/g Corg for Lithologic Subunits IIIA and IIIB at Site 545 (Cenomanian to Aptian) and 1.0 x 10**5 ng/g Corg for Unit V at Site 547 (Cenomanian to Albian) reflecting the slightly more advanced maturity stage at the latter site. Values exceeding 10**5 ng/g Corg (Site 545) and 2 x 10**5 ng/g Corg (Site 547) are associated with samples that are very lean in organic carbon and are generally rich in carbonate. These samples are enriched by small amounts of gaseous hydrocarbons. A detailed study of individual hydrocarbon concentrations, plotted against depth, reveal additional indications for migration phenomena. At Site 547, for instance, the most mobile hydrocarbons studied (e.g., ethane) appear to migrate by diffusion or a related process from more than 700 m depth toward the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower to middle Cretaceous sediments in the eastern Gulf of Mexico are richer in organic matter and have a more marine organic facies than their counterparts in the nearby western North Atlantic, suggesting that the Gulf was the more productive of the two areas. As in the western North Atlantic, the rate of supply of terrestrial organic matter was high when the rate of supply of noncarbonate clastic materials was high (at times of low sea level) and diminished as sea level rose. The rate of supply of marine organic matter was lower in the Early Cretaceous than in the Cenomanian, perhaps in response to the global rise in sea level over this period. Where they are thermally mature, the organic matterrich units drilled at Sites 535 and 540 should be excellent sources for liquid hydrocarbons. The Pleistocene sediments of the eastern Gulf are dominated by terrestrial organic matter representing Mississippi River effluent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cenozoic and Mesozoic sediments ranging in age from Pleistocene to Early Jurassic/late Triassic were recovered on DSDP Leg 79, off Morocco at Sites 544 to 547 in front of the Mazagan Plateau. The main zone of oil genesis should be reached at Site 547 within the Jurassic section. Organic material of marine origin with good petroleum potential characterizes the late Eocene slumps of Site 547 and originates from reworked organic matter of Cretaceous origin. Organic enrichment also occurs at Site 545 during the middle to late Albian period. Since the organic matter appears to be autochthonous, reducing environments of deposition are inferred. In the other Cretaceous deposits, variably altered organic matter of the same origin predominates. Finally, a transect including Site 370 off the Agadir Canyon, is studied: detrital organic matter and reducing environments of deposition were more developed during Albian time for Site 370 than for Site 545.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lenticle of organic matter in a piece of dolomite rock embedded in Triassic sandy mudstone of Core 547B-35 (DSDP Leg 79) was identified as inertinite-rich coal by organic petrography and analytical pyrolysis. About 95% of the organic matter recognized under the microscope consists of pyrofusinite, degradofusinite, and inertodetrinite. Gaseous hydrocarbons evolved during pyrolysis are rich in methane and are characteristic of inertinitic material. The organic matter is suggested to be a piece of redeposited Permian Gondwana coal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No presente trabalho é apresentado um estudo do tempo de resistência de partículas em um 'spray dryer' com contato ar/'spray' predominantemente co-corrente e sistema rotativo de atomização de amostra. Propõe-se aplicação de uma técnica nuclear, utilizando como traçador o radioisótopo La140.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Euler-Lagrange particle tracking model, developed for simulating fire atmosphere/sprinkler spray interactions, is described. Full details of the model along with the approximations made and restrictions applying are presented. Errors commonly found in previous formulations of the source terms used in this two-phase approach are described and corrected. In order to demonstrate the capabilities of the model it is applied to the simulation of a fire in a long corridor containing a sprinkler. The simulation presented is three-dimensional and transient and considers mass, momentum and energy transfer between the gaseous atmosphere and injected liquid droplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations of droplet dispersion behind cylinder wakes and downstream of icing tunnel spray bars were conducted. In both cases, a range of droplet sizes were investigated numerically with a Lagrangian particle trajectory approach while the turbulent air flow was investigated with a hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations approach scheme. In the first study, droplets were injected downstream of a cylinder at sub-critical conditions (i.e. with laminar boundary layer separation). A stochastic continuous random walk (CRW) turbulence model was used to capture the effects of sub-grid turbulence. Small inertia droplets (characterized by small Stokes numbers) were affected by both the large-scale and small-scale vortex structures and closely followed the air flow, while exhibiting a dispersion consistent with that of a scalar flow field. Droplets with intermediate Stokes numbers were centrifuged by the vortices to the outer edges of the wake, yielding an increased dispersion. Large Stokes number droplets were found to be less responsive to the vortex structures and exhibited the least dispersion. Particle concentration was also correlated with vorticity distribution which yielded preferential bias effects as a function of different particle sizes. This trend was qualitatively similar to results seen in homogenous isotropic turbulence, though the influence of particle inertia was less pronounced for the cylinder wake case. A similar study was completed for droplet dispersion within the Icing Research Tunnel (IRT) at the NASA Glenn Research Center, where it is important to obtain a nearly uniform liquid water content (LWC) distribution in the test section (to recreate atmospheric icing conditions).. For this goal, droplets are diffused by the mean and turbulent flow generated from the nozzle air jets, from the upstream spray bars, and from the vertical strut wakes. To understand the influence of these three components, a set of simulations was conducted with a sequential inclusion of these components. Firstly, a jet in an otherwise quiescent airflow was simulated to capture the impact of the air jet on flow turbulence and droplet distribution, and the predictions compared well with experimental results. The effects of the spray bar wake and vertical strut wake were then included with two more simulation conditions, for which it was found that the air jets were the primary driving force for droplet dispersion, i.e. that the spray bar and vertical strut wake effects were secondary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of thermal treatment plants of municipal wastewater is an alternative solution for the final disposition of the sludge produced on small cities as Barueri, a small town of São Paulo State, Brazil. Combustion and pyrolysis of that municipal waste, occurring respectively in air and nitrogen, have been studied by thermogravimetry (TG) and differential thermal analysis (DTA). The main steps of each case were analyzed and Kissinger plots were used to estimate respective activation energies. DTG peaks are more indicated to represent the condition of maximum reaction rates than DTA peaks.