895 resultados para SPECTRAL FUNCTIONS
Resumo:
We study the degree to which Kraichnan–Leith–Batchelor (KLB) phenomenology describes two-dimensional energy cascades in α turbulence, governed by ∂θ/∂t+J(ψ,θ)=ν∇2θ+f, where θ=(−Δ)α/2ψ is generalized vorticity, and ψ^(k)=k−αθ^(k) in Fourier space. These models differ in spectral non-locality, and include surface quasigeostrophic flow (α=1), regular two-dimensional flow (α=2) and rotating shallow flow (α=3), which is the isotropic limit of a mantle convection model. We re-examine arguments for dual inverse energy and direct enstrophy cascades, including Fjørtoft analysis, which we extend to general α, and point out their limitations. Using an α-dependent eddy-damped quasinormal Markovian (EDQNM) closure, we seek self-similar inertial range solutions and study their characteristics. Our present focus is not on coherent structures, which the EDQNM filters out, but on any self-similar and approximately Gaussian turbulent component that may exist in the flow and be described by KLB phenomenology. For this, the EDQNM is an appropriate tool. Non-local triads contribute increasingly to the energy flux as α increases. More importantly, the energy cascade is downscale in the self-similar inertial range for 2.5<α<10. At α=2.5 and α=10, the KLB spectra correspond, respectively, to enstrophy and energy equipartition, and the triad energy transfers and flux vanish identically. Eddy turnover time and strain rate arguments suggest the inverse energy cascade should obey KLB phenomenology and be self-similar for α<4. However, downscale energy flux in the EDQNM self-similar inertial range for α>2.5 leads us to predict that any inverse cascade for α≥2.5 will not exhibit KLB phenomenology, and specifically the KLB energy spectrum. Numerical simulations confirm this: the inverse cascade energy spectrum for α≥2.5 is significantly steeper than the KLB prediction, while for α<2.5 we obtain the KLB spectrum.
Resumo:
Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton (α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ – as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403–1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α∗ is a function of wavelength and chlorophyll, and three wavebands if α∗ is a fixed value.
Resumo:
Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant.
Resumo:
The strategic integration of the human resource (HR) function is regarded as crucial in the literature on (strategic) human resource management ((S)HRM). Evidence on the contextual or structural influences on this integration is, however, limited. The structural implications of unionism are particularly intriguing given the evolution of study of the employment relationship. Pluralism is typically seen as antithetical to SHRM, and unions as an impediment to the strategic integration of HR functions, but there are also suggestions in the literature that unionism might facilitate the strategic integration of HR. This paper deploys large-scale international survey evidence to examine the organization-level influence of unionism on this strategic integration, allowing for other established and plausible influences. The analysis reveals that exceptionally, where the organization-level role of unions is particularly contested, unionism does impede the strategic integration of HR. However, it is the predominance of the facilitation of the strategic integration of HR by unionism which is most remarkable.
Resumo:
We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.
Resumo:
Recent literature has suggested that macroeconomic forecasters may have asymmetric loss functions, and that there may be heterogeneity across forecasters in the degree to which they weigh under- and over-predictions. Using an individual-level analysis that exploits the Survey of Professional Forecasters respondents’ histogram forecasts, we find little evidence of asymmetric loss for the inflation forecasters
Resumo:
Although there is a strong policy interest in the impacts of climate change corresponding to different degrees of climate change, there is so far little consistent empirical evidence of the relationship between climate forcing and impact. This is because the vast majority of impact assessments use emissions-based scenarios with associated socio-economic assumptions, and it is not feasible to infer impacts at other temperature changes by interpolation. This paper presents an assessment of the global-scale impacts of climate change in 2050 corresponding to defined increases in global mean temperature, using spatially-explicit impacts models representing impacts in the water resources, river flooding, coastal, agriculture, ecosystem and built environment sectors. Pattern-scaling is used to construct climate scenarios associated with specific changes in global mean surface temperature, and a relationship between temperature and sea level used to construct sea level rise scenarios. Climate scenarios are constructed from 21 climate models to give an indication of the uncertainty between forcing and response. The analysis shows that there is considerable uncertainty in the impacts associated with a given increase in global mean temperature, due largely to uncertainty in the projected regional change in precipitation. This has important policy implications. There is evidence for some sectors of a non-linear relationship between global mean temperature change and impact, due to the changing relative importance of temperature and precipitation change. In the socio-economic sectors considered here, the relationships are reasonably consistent between socio-economic scenarios if impacts are expressed in proportional terms, but there can be large differences in absolute terms. There are a number of caveats with the approach, including the use of pattern-scaling to construct scenarios, the use of one impacts model per sector, and the sensitivity of the shape of the relationships between forcing and response to the definition of the impact indicator.
Resumo:
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.
Resumo:
A method has been developed to estimate Aerosol Optical Depth (AOD), Fine Mode Fraction (FMF) and Single Scattering Albedo (SSA) over land surfaces using simulated Sentinel-3 data. The method uses inversion of a coupled surface/atmosphere radiative transfer model, and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. A method of estimating AOD using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3 and the additional aerosol properties. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground based sun-photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.
Resumo:
Recent advances in thermal infrared remote sensing include the increased availability of airborne hyperspectral imagers (such as the Hyperspectral Thermal Emission Spectrometer, HyTES, or the Telops HyperCam and the Specim aisaOWL), and it is planned that an increased number spectral bands in the long-wave infrared (LWIR) region will soon be measured from space at reasonably high spatial resolution (by imagers such as HyspIRI). Detailed LWIR emissivity spectra are required to best interpret the observations from such systems. This includes the highly heterogeneous urban environment, whose construction materials are not yet particularly well represented in spectral libraries. Here, we present a new online spectral library of urban construction materials including LWIR emissivity spectra of 74 samples of impervious surfaces derived using measurements made by a portable Fourier Transform InfraRed (FTIR) spectrometer. FTIR emissivity measurements need to be carefully made, else they are prone to a series of errors relating to instrumental setup and radiometric calibration, which here relies on external blackbody sources. The performance of the laboratory-based emissivity measurement approach applied here, that in future can also be deployed in the field (e.g. to examine urban materials in situ), is evaluated herein. Our spectral library also contains matching short-wave (VIS–SWIR) reflectance spectra observed for each urban sample. This allows us to examine which characteristic (LWIR and) spectral signatures may in future best allow for the identification and discrimination of the various urban construction materials, that often overlap with respect to their chemical/mineralogical constituents. Hyperspectral or even strongly multi-spectral LWIR information appears especially useful, given that many urban materials are composed of minerals exhibiting notable reststrahlen/absorption effects in this spectral region. The final spectra and interpretations are included in the London Urban Micromet data Archive (LUMA; http://LondonClimate.info/LUMA/SLUM.html).
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.
Resumo:
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.
Resumo:
There are no direct observational methods for determining the total rate at which energy is extracted from the solar wind by the magnetosphere. In the absence of such a direct measurement, alternative means of estimating the energy available to drive the magnetospheric system have been developed using different ionospheric and magnetospheric indices as proxies for energy consumption and dissipation and thus the input. The so-called coupling functions are constructed from the parameters of the interplanetary medium, as either theoretical or empirical estimates of energy transfer, and the effectiveness of these coupling functions has been evaluated in terms of their correlation with the chosen index. A number of coupling functions have been studied in the past with various criteria governing event selection and timescale. The present paper contains an exhaustive survey of the correlation between geomagnetic activity and the near-Earth solar wind and two of the planetary indices at a wide variety of timescales. Various combinations of interplanetary parameters are evaluated with careful allowance for the effects of data gaps in the interplanetary data. We show that the theoretical coupling, P�, function first proposed by Vasyliunas et al. is superior at all timescales from 1-day to 1-year.