936 resultados para SOLITARY TRACT
Resumo:
Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.
Resumo:
In asymptomatic bacteriuria (ABU), bacteria colonize the urinary tract without provoking symptoms. Here, we compared the virulence properties of a collection of ABU Escherichia coli strains to cystitis and pyelonephritis strains. Specific urinary tract infection (UTI)-associated virulence genes, hemagglutination characteristics, siderophore production, hemolysis, biofilm formation, and the ability of strains to adhere to and induce cytokine responses in epithelial cells were analyzed. ABU strains were phylogenetically related to strains that cause symptomatic UTI. However, the virulence properties of the ABU strains were variable and dependent on a combination of genotypic and phenotypic factors. Most ABU strains adhered poorly to epithelial cells; however, we also identified a subgroup of strongly adherent strains that were unable to stimulate an epithelial cell IL-6 cytokine response. Poor immune activation may represent one mechanism whereby ABU E. coli evade immune detection after the establishment of bacteriuria.
Resumo:
The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.
Resumo:
Pathogenic bacteria have a large repertoire of surface organelles involved in adherence, motility and protein export, but how individual bacteria co-ordinate surface organelle expression to prevent interference and excessive immune stimulation is unclear. Phase variation is a mechanism by which expression of surface factors is limited to a fraction of the bacterial population; however, the presence of multiple homologous surface structures controlled by related mechanisms and regulators antagonizes the independent expression achieved by phase variation. To investigate whether other mechanisms have evolved to sort out the bacterial cell surface, we examined regulatory cross-talk between multiple phase-variable pyelonephritis-associated pili (pap) operons in Escherichia coli isolates associated with urinary tract infections. Allelic variation identified in the regulatory regions and regulators acts synergistically to limit coexpression of homologous fimbrial operons. In particular, there is evidence that papI is under positive selection and PapI variants displayed differences in their capacity to activate related pap operons. Alleles of the high-affinity binding site for PapB were shown to contain a variable number of (T/A)3 repeats occurring every 9 bp that altered the sensitivity of pap operon activation. Taken together with other examples of surface organelle cross-talk, we illustrate how this regulation could promote sequential expression.
Resumo:
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are a significant health concern, exacerbated by the rapid emergence of multidrug resistant strains refractory to antibiotic treatment. P fimbriae are strongly associated with upper urinary tract colonization due to specific binding to α-D-galactopyranosyl-(1-4)-β-D-galactopyranoside receptors in the kidneys. Thus, inhibiting P-fimbrial adhesion may reduce the incidence of UPEC-mediated UTI. E. coli 83972 is an asymptomatic bacteriuria isolate successfully used as a prophylactic agent to prevent UTI in human studies. We constructed a recombinant E. coli 83972 strain displaying a surface-located oligosaccharide P fimbriae receptor mimic that bound to P-fimbriated E. coli producing any of the 3 PapG adhesin variants. The recombinant strain, E. coli 83972:: lgtCE, impaired P fimbriae–mediated adhesion to human erythrocytes and kidney epithelial cells. Additionally, E. coli 83972::lgtCE impaired urine colonization by UPEC in a mouse UTI model, demonstrating its potential as a prophylactic agent to prevent UTI.
Resumo:
The majority of Escherichia coli strains isolated from urinary tract infections have the potential to express multiple fimbriae. Two of the most common fimbrial adhesins are type 1 fimbriae and pyelonephritis-associated pili (Pap). Previous research has shown that induced, plasmid-based expression of a Pap regulator, papB, and its close homologues can prevent inversion of the fim switch controlling the expression of type 1 fimbriae. The aim of the present study was to determine if this cross-regulation occurs when PapB is expressed from its native promoter in the chromosome of E. coli K-12 and clinical isolates. The regulation was examined in three ways: (1) mutated alleles of the pap regulatory region, including papB and papI, that maintain the pap promoter in either the off or the on phase were exchanged into the chromosome of both E. coli K-12 and the clinical isolate E. coli CFT073, and the effect on type 1 fimbrial expression was measured; (2) type 1 fimbrial expression was determined using a novel fimS : : gfp+ reporter system in mutants of the clinical isolate E. coli 536 in which combinations of complete fimbrial clusters had been deleted; (3) type 1 fimbrial expression was determined in a range of clinical isolates and compared with both the number of P clusters and their expression. All three approaches demonstrated that P expression represses type 1 fimbrial expression. Using a number of novel genetic approaches, this work extends the initial finding that PapB inhibits FimB recombination to the impact of this regulation in clinical isolates.
Resumo:
Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.
Resumo:
Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.
Resumo:
A cohort of 161 underground miners who had been highly exposed to dinitrotoluene (DNT) in the copper-mining industry of the former German Democratic Republic was reinvestigated for signs of subclinical renal damage. The study included a screening of urinary proteins excreted by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and quantitations of the specific urinary proteins α 1-microglobulin and glutathione-S-transferase α (GST α) as biomarkers for damage of the proximal tubule and glutathione-S-transferase π (GST π) for damage of the distal tubule. The exposures were categorized semiquantitatively (low, medium, high, and very high), according to the type and duration of professional contact with DNT. A straight dose-dependence of pathological protein excretion patterns with the semiquantitative ranking of DNT exposure was seen. Most of the previously reported cancer cases of the urinary tract, especially those in the higher exposed groups, were confined to pathological urinary protein excretion patterns. The damage from DNT was directed toward the tubular system. In many cases, the appearance of Tamm-Horsfall protein, a 105-kD protein marker, was noted. Data on the biomarkers α 1-microglobulin, GST α, and GST π consistently demonstrated a dose-dependent increase in tubular damage, which confirmed the results of screening by SDS-PAGE and clearly indicated a nephrotoxic effect of DNT under the given conditions of exposure. Within the cluster of cancer patients observed among the DNT-exposed workers, only in exceptional cases were normal biomarker excretions found.
Resumo:
The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-θ, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes α, μ, and π was studied with affnity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes α, μ, and π but also of enhancing UDGPT and GST-θ. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.
Resumo:
Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.
Resumo:
To identify key regulatory mechanisms in the growth and development of the human endometrium, microarray analysis was performed on uncultured human endometrium collected during menstruation (M) and the late-proliferative (LATE-P)-phase of the menstrual cycle, as well as after 24 h incubation in the presence of oestradiol (17beta-E2). We demonstrate the expression of novel gene transcripts in the human endometrium. i.e. mucin-9, novel oestrogen-responsive gene transcripts, i.e. gelsolin and flotillin-1, and genes known to be expressed in human endometrium but not yet shown to be oestrogen responsive, i.e. connexin-37 and TFF1/pS2. Genes reported to be expressed during the implantation window and implicated in progesterone action, i.e. secretoglobin family 2A, member 2 (mammaglobin) and homeobox-containing proteins, were up-regulated in uncultured LATE-P-phase endometrium compared to M-phase endometrium. Some gene transcripts are regulated directly by 17beta-E2 alone, others are influenced by the in vivo environment as well. These observations emphasise that the regulation of endometrium maturation by oestrogen entails more then just stimulation of cell proliferation.
Resumo:
Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.
Resumo:
Lesser short-tailed bats (Mystacina tuberculata) have recently been translocated to Kapiti Island in an attempt to form a new population of this threatened species. However, the island's vegetation is regenerating, and there was doubt that the forests provided enough large trees with cavities for bats to roost in. This study measured the availability of tree-trunk cavities of the right size for potential roost sites on Kapiti Island, and assessed if habitat restoration would be required to increase the translocation's chance of success. First, trees with cavities accessible to us were sampled in six of Kapiti Island's forest types. Size variables known to affect roost site selection by lesser short-tailed bats at the tree and cavity level were measured. Trees were classified as containing cavities that could potentially provide suitable roosts if their values for all variables measured fell within the range of roosts used by lesser short-tailed bats in natural populations. Roosts were classified as suitably sized for solitary bats or for colonies, using measurements from both types of roosts in natural populations. Second, the density of these potential roost cavities was calculated. Cavities of a size potentially suitable for colonies were found in four of the six forest types at densities ranging from 3.2 +/- 3.2 SE to 52.4 +/- 14.0 trees per ha. Density of potential solitary roosts was much higher. Not all potential cavities will be suitable because they may be damp, poorly insulated, or have an unsuitable microclimate. Nevertheless, our estimates indicated that the two most extensive forest types each contained thousands of potential cavities of a size suitable for colonies of lesser short-tailed bats. In addition, there were tens of thousands of cavities large enough to shelter solitary bats. Roost habitat restoration appears unnecessary to assist translocated Mystacina tuberculata on Kapiti Island.
Resumo:
BACKGROUND This paper describes the first national burden of disease study for South Africa. The main focus is the burden due to premature mortality, i.e. years of life lost (YLLs). In addition, estimates of the burden contributed by morbidity, i.e. the years lived with disability (YLDs), are obtained to calculate disability-adjusted life years (DALYs); and the impact of AIDS on premature mortality in the year 2010 is assessed. METHOD Owing to the rapid mortality transition and the lack of timely data, a modelling approach has been adopted. The total mortality for the year 2000 is estimated using a demographic and AIDS model. The non-AIDS cause-of-death profile is estimated using three sources of data: Statistics South Africa, the National Department of Home Affairs, and the National Injury Mortality Surveillance System. A ratio method is used to estimate the YLDs from the YLL estimates. RESULTS The top single cause of mortality burden was HIV/AIDS followed by homicide, tuberculosis, road traffic accidents and diarrhoea. HIV/AIDS accounted for 38% of total YLLs, which is proportionately higher for females (47%) than for males (33%). Pre-transitional diseases, usually associated with poverty and underdevelopment, accounted for 25%, non-communicable diseases 21% and injuries 16% of YLLs. The DALY estimates highlight the fact that mortality alone underestimates the burden of disease, especially with regard to unintentional injuries, respiratory disease, and nervous system, mental and sense organ disorders. The impact of HIV/AIDS is expected to more than double the burden of premature mortality by the year 2010. CONCLUSION This study has drawn together data from a range of sources to develop coherent estimates of premature mortality by cause. South Africa is experiencing a quadruple burden of disease comprising the pre-transitional diseases, the emerging chronic diseases, injuries, and HIV/AIDS. Unless interventions that reduce morbidity and delay morbidity become widely available, the burden due to HIV/AIDS can be expected to grow very rapidly in the next few years. An improved base of information is needed to assess the morbidity impact more accurately.