901 resultados para SIZE-CONTROLLED SYNTHESIS
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results on the design of proportional plus integral plus derivative (PID) controllers for a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. As far as we know, previous results on the synthesis of PID controllers rely on the solution of transcendental equations. This paper also extends previous results on the synthesis of proportional controllers for a class of delay systems Of retarded type to a larger class of delay systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To study the effect of additional strengthening of hip abductor and lateral rotator muscles in a strengthening quadriceps exercise rehabilitation programme for patients with the patellofemoral pain syndrome. Design: Randomized controlled pilot trial. Setting: Clinical setting with home programme. Participants: Fourteen patients with patellofemoral pain syndrome. Intervention: The subjects were randomly assigned to the intervention group (strengthening of quadriceps plus strengthening of hip abductor and lateral rotator muscles) or to the control group (strengthening of quadriceps). Both groups participated in a six-week home exercise protocol. Main outcome measures: The perceived pain symptoms, isokinetic eccentric knee extensor, hip abductor and lateral rotator torques and the gluteus medius electromyographic activity were assessed before and after treatment. Parametric and non-parametric tests were used to compare the groups before and after treatment with alpha = 0.05. Results: Only the intervention group improved perceived pain symptoms during functional activities (P=0.02-0.04) and also increased their gluteus medius electromyographic activity during isometric voluntary contraction (P=0.03), Eccentric knee extensors torque increased in both groups (P=0.04 and P=0.02). There was no statistically significant difference in the hip muscles torque in either group. Conclusion: Supplementation of strengthening of hip abductor and lateral rotator muscles in a strengthening quadriceps exercise programme provided additional benefits with respect to the perceived pain symptoms during functional activities in patients with patellofemoral pain syndrome after six weeks of treatment.
Resumo:
This paper aims to investigate the influence of some dissolved air flotation (DAF) process variables (specifically: the hydraulic detention time in the contact zone and the supplied dissolved air concentration) and the pH values, as pretreatment chemical variables, on the micro-bubble size distribution (BSD) in a DAF contact zone. This work was carried out in a pilot plant where bubbles were measured by an appropriate non-intrusive image acquisition system. The results show that the obtained diameter ranges were in agreement with values reported in the literature (10-100mm), quite independently of the investigated conditions. The linear average diameter varied from 20 to 30mm, or equivalently, the Sauter (d(3,2)) diameter varied from 40 to 50mm. In all investigated conditions, D(50) was between 75% and 95%. The BSD might present different profile (with a bimodal curve trend), however, when analyzing the volumetric frequency distribution (in some cases with the appearance of peaks in diameters ranging from 90-100mm). Regarding volumetric frequency analysis, all the investigated parameters can modify the BSD in DAF contact zone after the release point, thus potentially causing changes in DAF kinetics. This finding prompts further research in order to verify the effect of these BSD changes on solid particle removal efficiency by DAF.
Resumo:
Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamic behavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results showed that the presence of immobilized biomass increased particle density and altered the main fluid dynamic parameters investigated.
Resumo:
This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets, flashing into a two-dimensional axisymmetric domain, while in the two-phase region. In general, the phenomenon starts off when a high-pressure, high-temperature liquid jet emerges from a small nozzle or orifice expanding into a low-pressure chamber, below its saturation pressure taken at the injection temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a two-phase high-speed mixture in various directions, expanding to supersonic velocities. In order to reach the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave. The balance equations that govern the phenomenon are mass conservation, momentum conservation, and energy conservation, plus an equation-of-state for the substance. A false-transient model is implemented using the shock capturing scheme: dispersion-controlled dissipative (DCD), which was used to calculate the flow conditions as the steady-state condition is reached. Numerical results with computational code DCD-2D vI have been analyzed. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Effects of particle abrasive sizes on wear resistance of mottled cast iron with different retained austenite contents were studied. Abrasive wear tests using a pin test on alumina paper were carried out, using abrasive sizes between 16 mu m and 192 mu m. Retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of samples and the alumina paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results show that at lower abrasive sizes the mass loss was similar for the iron with different austenite contents. However, at higher abrasive sizes the samples with higher retained austenite content presented higher abrasion resistance. For lower abrasive sizes tested, samples with higher and lower retained austenite content both presented microcutting. On the other hand, the main wear micromechanism for the samples with higher retained austenite content and higher abrasive sizes was microploughing. The samples with lower retained austenite content presented microcutting and wedge formation at higher abrasive sizes. Higher abrasive size induced more microcutting in samples with lower retained austenite. The iron with lower retained austenite content presented wider grooves for the different abrasive sizes measured. SEM on the abrasive paper used on samples with higher retained austenite showed continuous and discontinuous microchips and the samples with lower retained austenite showed discontinuous microchips at 66 and 141 mu m. This research demonstrates the relation between abrasive size, wear resistance, groove width and wear micromechanism for mottled cast iron with different retained austenite contents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The processes that govern the rate of particle recovery in a flotation cell include the following sub-processes: collision, attachment, and stability of the aggregate formed by particles and bubbles. Collision is controlled by bulk hydrodynamics inside the flotation cell, while attachment is largely dominated by variables that belong to the domain of surface chemistry (contact angle, induction time). As for the stability of the particle/bubble aggregate, its efficiency depends on both hydrodynamics plus surface chemistry variables of the system. The flotation recovery of coarse particles of apatite and glass spheres was measured by micro-flotation and batch flotation tests in which hydrodynamic parameters were evaluated, such as impeller rotational speed, diameter, and geometry, as well as particle size and density. Results revealed that a proper impeller rotational speed yielded turbulence levels, which enabled to keep particles fully suspended, this way optimizing the collision efficiency between particles and bubbles, without jeopardizing the stability of the particle-bubble aggregates.
Resumo:
Systems of distributed artificial intelligence can be powerful tools in a wide variety of practical applications. Its most surprising characteristic, the emergent behavior, is also the most answerable for the difficulty in. projecting these systems. This work proposes a tool capable to beget individual strategies for the elements of a multi-agent system and thereof providing to the group means on obtaining wanted results, working in a coordinated and cooperative manner as well. As an application example, a problem was taken as a basis where a predators` group must catch a prey in a three-dimensional continuous ambient. A synthesis of system strategies was implemented of which internal mechanism involves the integration between simulators by Particle Swarm Optimization algorithm (PSO), a Swarm Intelligence technique. The system had been tested in several simulation settings and it was capable to synthesize automatically successful hunting strategies, substantiating that the developed tool can provide, as long as it works with well-elaborated patterns, satisfactory solutions for problems of complex nature, of difficult resolution starting from analytical approaches. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Two different commercial crosslinked resins (Amberlite GT73 and Amberlite IRC748) were employed for anchoring silver. The -SH and -N(CH2COOH)2 groups, respectively, present on these resins were used for Ag+ chelation from an aqueous solution. The Ag+ ions were reduced with three different reductants: hydrazine, hydroxylamine, and formaldehyde (under an alkaline pH). The produced composites were characterized with thermogravimetry/differential thermogravimetry and scanning electron microscopy combined with a backscattered scanning electron detector. Energy-dispersive X-ray spectroscopy coupled to scanning electron microscopy allowed the observation of submicrometer particles of silver, and chemical microanalysis of emitted X-rays revealed the presence of metal on the internal and external surfaces of the composite microspheres. The amount of incorporated silver was determined by titration. The antibacterial activity of the silver/resin composites was determined toward 10(3)-10(7) cells/mL dilutions of the auxotrophic AB1157 Escherichia coli strain; the networks containing anchored submicrometer silver particles were completely bactericidal within a few minutes because of the combined action of silver and functional groups of the resins. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Twelve samples with different grain sizes were prepared by normal grain growth and by primary recrystallization, and the hysteresis dissipated energy was measured by a quasi-static method. Results showed a linear relation between hysteresis energy loss and the inverse of grain size, which is here called Mager`s law, for maximum inductions from 0.6 to 1.5 T, and a Steinmetz power law relation between hysteresis loss and maximum induction for all samples. The combined effect is better described by a Mager`s law where the coefficients follow Steinmetz law.
Resumo:
Phosphinic-derivative poly(styrene-co-divinylbenzene)-based on PS-DVB copolymers with different porosity degrees have been prepared by aromatic electrophilic substitution reaction using PCl(3)/AlCl(3) followed by base-promoted hydrolysis. The phosphorylation reaction was analyzed by infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetry (TG/DTG). In addition, the phosphorous content of the phosphorylated copolymers was determined by spectrophotometry using the method based on sodium molybdate reactant so that the extension of that modification could be assessed. The performance of the phosphorylated resins in the extraction of Pb(2+) from aqueous solutions in a batch system was also evaluated. The Pb(2+) content was determined by atomic absorption spectrometry (AAS). These materials presented excellent extraction capacity under the contact time of 30 min and pH 6.
Resumo:
The aim of this work is to study MnO reduction by solid carbon. The influence of size of carbon particles, slag basicity, and bath temperature on MnO reduction was investigated. Fine Manganese ore particles were used as a source of MnO. Three sizes of carbon particles were used; 0.230 mm, 0.162 mm and 0.057 mm, binary basicity of 1 and 1.5 and temperatures of 1550, 1550 and 1600 degrees C. Curves were drawn for Mn content in the bath as a function of time and temperature for the several studied parameters. The MnO reduction rates were determined using these data. [doi:10.2320/matertrans.M2011007]
Resumo:
In the present work, the sensitivity of NIR spectroscopy toward the evolution of particle size was studied during emulsion homopolymerization of styrene (Sty) and emulsion copolymerization of vinyl acetate-butyl acrylate conducted in a semibatch stirred tank and a tubular pulsed sieve plate reactor, respectively. All NIR spectra were collected online with a transflectance probe immersed into the reaction medium. The spectral range used for the NIR monitoring was from 9 500 to 13 000 cm(-1), where the absorbance of the chemical components present is minimal and the changes in the NIR spectrum can be ascribed to the effects of light scattering by the polymer particles. Off-line measurements of the average diameter of the polymer particles by DLS were used as reference values for the development of the multi-variate NIR calibration models based on partial least squares. Results indicated that, in the spectral range studied, it is possible to monitor the evolution of the average size of the polymer particles during emulsion polymerization reactions. The inclusion of an additional spectral range, from 5 701 to 6 447 cm(-1), containing information on absorbances (""chemical information"") in the calibration models was also evaluated.
Resumo:
This contribution describes the development of a continuous emulsion copolymerization processs for vinyl acetate and n-butyl acrylate in a tubular reactor. Special features of this reactor include the use of oscillatory (pulsed) flow and internals (sieve plates) to prevent polymer fouling and promote good radial mixing, along with a controlled amount of axial mixing. The copolymer system studied (vinyl acetate and butyl acrylate) is strongly prone to composition drift due to very different reactivity ratios. An axially dispersed plug flow model, based on classical free radical copolymerization kinetics, was developed for this process and used successfully to optimize the lateral feeding profile to reduce compositional drift. An energy balance was included in the model equations to predict the effect of temperature variations on the process. The model predictions were validated with experimental data for monomer conversion, copolymer composition, average particle size, and temperature measured along the reactor length.
Resumo:
The objective of this paper is to develop a mathematical model for the synthesis of anaerobic digester networks based on the optimization of a superstructure that relies on a non-linear programming formulation. The proposed model contains the kinetic and hydraulic equations developed by Pontes and Pinto [Chemical Engineering journal 122 (2006) 65-80] for two types of digesters, namely UASB (Upflow Anaerobic Sludge Blanket) and EGSB (Expanded Granular Sludge Bed) reactors. The objective function minimizes the overall sum of the reactor volumes. The optimization results show that a recycle stream is only effective in case of a reactor with short-circuit, such as the UASB reactor. Sensitivity analysis was performed in the one and two-digester network superstructures, for the following parameters: UASB reactor short-circuit fraction and the EGSB reactor maximum organic load, and the corresponding results vary considerably in terms of digester volumes. Scenarios for three and four-digester network superstructures were optimized and compared with the results from fewer digesters. (C) 2009 Elsevier B.V. All rights reserved.