926 resultados para SISO MULTI-RATE MC-CDMA
Resumo:
This paper examines the issue of face, speaker and bi-modal authentication in mobile environments when there is significant condition mismatch. We introduce this mismatch by enrolling client models on high quality biometric samples obtained on a laptop computer and authenticating them on lower quality biometric samples acquired with a mobile phone. To perform these experiments we develop three novel authentication protocols for the large publicly available MOBIO database. We evaluate state-of-the-art face, speaker and bi-modal authentication techniques and show that inter-session variability modelling using Gaussian mixture models provides a consistently robust system for face, speaker and bi-modal authentication. It is also shown that multi-algorithm fusion provides a consistent performance improvement for face, speaker and bi-modal authentication. Using this bi-modal multi-algorithm system we derive a state-of-the-art authentication system that obtains a half total error rate of 6.3% and 1.9% for Female and Male trials, respectively.
Resumo:
In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%.
Resumo:
Most standard algorithms for prediction with expert advice depend on a parameter called the learning rate. This learning rate needs to be large enough to fit the data well, but small enough to prevent overfitting. For the exponential weights algorithm, a sequence of prior work has established theoretical guarantees for higher and higher data-dependent tunings of the learning rate, which allow for increasingly aggressive learning. But in practice such theoretical tunings often still perform worse (as measured by their regret) than ad hoc tuning with an even higher learning rate. To close the gap between theory and practice we introduce an approach to learn the learning rate. Up to a factor that is at most (poly)logarithmic in the number of experts and the inverse of the learning rate, our method performs as well as if we would know the empirically best learning rate from a large range that includes both conservative small values and values that are much higher than those for which formal guarantees were previously available. Our method employs a grid of learning rates, yet runs in linear time regardless of the size of the grid.
Resumo:
Viewer interests, evoked by video content, can potentially identify the highlights of the video. This paper explores the use of facial expressions (FE) and heart rate (HR) of viewers captured using camera and non-strapped sensor for identifying interesting video segments. The data from ten subjects with three videos showed that these signals are viewer dependent and not synchronized with the video contents. To address this issue, new algorithms are proposed to effectively combine FE and HR signals for identifying the time when viewer interest is potentially high. The results show that, compared with subjective annotation and match report highlights, ‘non-neutral’ FE and ‘relatively higher and faster’ HR is able to capture 60%-80% of goal, foul, and shot-on-goal soccer video events. FE is found to be more indicative than HR of viewer’s interests, but the fusion of these two modalities outperforms each of them.
Resumo:
The maximum principle for the space and time–space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time–space Riesz–Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor–corrector method combining the L1 and L2 discrete schemes, we present a numerical method for the specified equation. Two examples are given to illustrate the obtained results.
Resumo:
Cite as: Perrin, Dimitri (2008) Multi-layered model of individual HIV infection progression and mechanisms of phenotypical expression. PhD thesis, Dublin City University.
Resumo:
The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.
Resumo:
This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.
Resumo:
Tumour microenvironment greatly influences the development and metastasis of cancer progression. The development of three dimensional (3D) culture models which mimic that displayed in vivo can improve cancer biology studies and accelerate novel anticancer drug screening. Inspired by a systems biology approach, we have formed 3D in vitro bioengineered tumour angiogenesis microenvironments within a glycosaminoglycan-based hydrogel culture system. This microenvironment model can routinely recreate breast and prostate tumour vascularisation. The multiple cell types cultured within this model were less sensitive to chemotherapy when compared with two dimensional (2D) cultures, and displayed comparative tumour regression to that displayed in vivo. These features highlight the use of our in vitro culture model as a complementary testing platform in conjunction with animal models, addressing key reduction and replacement goals of the future. We anticipate that this biomimetic model will provide a platform for the in-depth analysis of cancer development and the discovery of novel therapeutic targets.
Resumo:
Menopausal transition can be challenging for many women. This study tested the effectiveness of an intervention delivered in different modes in decreasing menopausal symptoms in midlife women. The Women's Wellness Program (WWP) intervention was delivered to 225 Australian women aged between 40 and 65 years through three modes (i.e., on-line independent, face-to-face with nurse consultations, and on-line with virtual nurse consultations). All women in the study were provided with a 12-week Program Book outlining healthy lifestyle behaviors while women in the consultation groups were supported by a registered nurse who provide tailored health education and assisted with individual goal setting for exercise, healthy eating, smoking and alcohol consumption. Pre- and post-intervention data were collected on menopausal symptoms (Greene Climacteric Scale), health related quality of life (SF12), and modifiable lifestyle factors. Linear mixed-effect models showed an average 0.87 and 1.23 point reduction in anxiety (p < 0.01) and depression scores (p < 0.01) over time in all groups. Results also demonstrated reduced vasomotor symptoms (β = −0.19, SE = 0.10, p = 0.04) and sexual dysfunction (β = −0.17, SE = 0.06, p < 0.01) in all participants though women in the face-to-face group generally reported greater reductions than women in the other groups. This lifestyle intervention embedded within a wellness framework has the potential to reduce menopausal symptoms and improve quality of life in midlife women thus potentially enhancing health and well-being in women as they age. Of course, study replication is needed to confirm the intervention effects.
Resumo:
Organizations executing similar business processes need to understand the differences and similarities in activities performed across work environments. Presently, research interest is directed towards the potential of visualization for the display of process models, to support users in their analysis tasks. Although recent literature in process mining and comparison provide several methods and algorithms to perform process and log comparison, few contributions explore novel visualization approaches. This paper analyses process comparison from a design perspective, providing some practical visualization techniques as anal- ysis solutions (/to support process analysis). The design of the visual comparison has been tackled through three different points of view: the general model, the projected model and the side-by-side comparison in order to support the needs of business analysts. A case study is presented showing the application of process mining and visualization techniques to patient treatment across two Australian hospitals.
Resumo:
The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE-GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane
Resumo:
Background Currently, care providers and policy-makers internationally are working to promote normal birth. In Australia, such initiatives are being implemented without any evidence of the prevalence or determinants of normal birth as a multidimensional construct. This study aimed to better understand the determinants of normal birth (defined as without induction of labour, epidural/spinal/general anaesthesia, forceps/vacuum, caesarean birth, or episiotomy) using secondary analyses of data from a population survey of women in Queensland, Australia. Methods Women who birthed in Queensland during a two-week period in 2009 were mailed a survey approximately three months after birth. Women (n=772) provided retrospective data on their pregnancy, labour and birth preferences and experiences, socio-demographic characteristics, and reproductive history. A series of logistic regressions were conducted to determine factors associated with having labour, having a vaginal birth, and having a normal birth. Findings Overall, 81.9% of women had labour, 66.4% had a vaginal birth, and 29.6% had a normal birth. After adjusting for other significant factors, women had significantly higher odds of having labour if they birthed in a public hospital and had a pre-existing preference for a vaginal birth. Of women who had labour, 80.8% had a vaginal birth. Women who had labour had significantly higher odds of having a vaginal birth if they attended antenatal classes, did not have continuous fetal monitoring, felt able to ‘take their time’ in labour, and had a pre-existing preference for a vaginal birth. Of women who had a vaginal birth, 44.7% had a normal birth. Women who had a vaginal birth had significantly higher odds of having a normal birth if they birthed in a public hospital, birthed outside regular business hours, had mobility in labour, did not have continuous fetal monitoring, and were non-supine during birth. Conclusions These findings provide a strong foundation on which to base resources aimed at increasing informed decision-making for maternity care consumers, providers, and policy-makers alike. Research to evaluate the impact of modifying key clinical practices (e.g., supporting women׳s mobility during labour, facilitating non-supine positioning during birth) on the likelihood of a normal birth is an important next step.
Resumo:
Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.
Resumo:
For future planetary robot missions, multi-robot-systems can be considered as a suitable platform to perform space mission faster and more reliable. In heterogeneous robot teams, each robot can have different abilities and sensor equipment. In this paper we describe a lunar demonstration scenario where a team of mobile robots explores an unknown area and identifies a set of objects belonging to a lunar infrastructure. Our robot team consists of two exploring scout robots and a mobile manipulator. The mission goal is to locate the objects within a certain area, to identify the objects, and to transport the objects to a base station. The robots have a different sensor setup and different capabilities. In order to classify parts of the lunar infrastructure, the robots have to share the knowledge about the objects. Based on the different sensing capabilities, several information modalities have to be shared and combined by the robots. In this work we propose an approach using spatial features and a fuzzy logic based reasoning for distributed object classification.