912 resultados para SHOULDER INSTABILITY
Resumo:
Background. This paper aimed to identify condition-specific patient-reported outcome measures used in clinical trials among people with wrist osteoarthritis and summarise empirical peer-reviewed evidence supporting their reliability, validity, and responsiveness to change. Methods. A systematic review of randomised controlled trials among people with wrist osteoarthritis was undertaken. Studies reporting reliability, validity, or responsiveness were identified using a systematic reverse citation trail audit procedure. Psychometric properties of the instruments were examined against predefined criteria and summarised. Results. Thirteen clinical trials met inclusion criteria. The most common patient-reported outcome was the disabilities of the arm, shoulder, and hand questionnaire (DASH). The DASH, the Michigan Hand Outcomes Questionnaire (MHQ), the Patient Evaluation Measure (PEM), and the Patient-Reported Wrist Evaluation (PRWE) had evidence supporting their reliability, validity, and responsiveness. A post-hoc review of excluded studies revealed the AUSCAN Osteoarthritis Hand Index as another suitable instrument that had favourable reliability, validity, and responsiveness. Conclusions. The DASH, MHQ, and AUSCAN Osteoarthritis Hand Index instruments were supported by the most favourable empirical evidence for validity, reliability, and responsiveness. The PEM and PRWE also had favourable empirical evidence reported for these elements. Further psychometric testing of these instruments among people with wrist osteoarthritis is warranted.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Vehicles are able to communicate on the local traffic state in real time, which could result in an automatic and therefore better reaction to the mechanism of traffic jam formation. An upstream single hop radio broadcast network can improve the perception of each cooperative driver within radio range and hence the traffic stability. The impact of a cooperative law on traffic congestion appearance is investigated, analytically and through simulation. Ngsim field data is used to calibrate the Optimal Velocity with Relative Velocity (OVRV) car following model and the MOBIL lane-changing model is implemented. Assuming that congestion can be triggered either by a perturbation in the instability domain or by a critical lane changing behavior, the calibrated car following behavior is used to assess the impact of a microscopic cooperative law on abnormal lane changing behavior. The cooperative law helps reduce and delay traffic congestion as it increases traffic flow stability.
Resumo:
Discourses of public education reform, like that exemplified within the Queensland Government’s future vision document, Queensland State Education-2010 (QSE-2010), position schooling as a panacea to pervasive social instability and a means to achieve a new consensus. However, in unravelling the many conflicting statements that conjoin to form education policy and inform related literature (Ball, 1993), it becomes clear that education reform discourse is polyvalent (Foucault, 1977). Alongside visionary statements that speak of public education as a vehicle for social justice are the (re)visionary or those reflecting neoliberal individualism and a conservative politics. In this paper, it is argued that the latter coagulate to form strategic discursive practices which work to (re)secure dominant relations of power. Further, discussion of the characteristics needed by the “ideal” future citizen of Queensland reflect efforts to ‘tame change through the making of the child’ (Popkewitz, 2004, p.201). The casualties of this (re)vision and the refusal to investigate the pathologies of “traditional” schooling are the children who, for whatever reason, do not conform to the norm of the desired school child as an “ideal” citizen-in-the-making and who become relegated to alternative educational settings.
Resumo:
We introduce a lightweight biometric solution for user authentication over networks using online handwritten signatures. The algorithm proposed is based on a modified Hausdorff distance and has favorable characteristics such as low computational cost and minimal training requirements. Furthermore, we investigate an information theoretic model for capacity and performance analysis for biometric authentication which brings additional theoretical insights to the problem. A fully functional proof-of-concept prototype that relies on commonly available off-the-shelf hardware is developed as a client-server system that supports Web services. Initial experimental results show that the algorithm performs well despite its low computational requirements and is resilient against over-the-shoulder attacks.
Resumo:
The structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O, a borate–carbonate of calcium and magnesium has been assessed using vibrational spectroscopy. Assignment of bands is undertaken by comparison with the data from other published results. Intense Raman band at 1134 cm−1 with a shoulder at 1123 cm−1 is assigned to the symmetric stretching mode. The Raman spectrum displays bands at 1479, 1524 and 1560 cm−1 which are assigned to the antisymmetric stretching vibrations. The observation of multiple carbonate stretching bands supports the concept that the carbonate units are non-equivalent. The Raman band at 968 cm−1 with a shoulder at 950 cm−1 is assigned to the symmetric stretching mode of trigonal boron. Raman bands at 627 and 651 cm−1 are assigned to the out-of-plane bending modes of trigonal and tetrahedral boron. Raman spectroscopy coupled with infrared spectroscopy enables the molecular structure of the mineral sakhaite to be assessed.
Resumo:
Plastic deformation behavior of Cu/Ni/Wmetallicmultilayers with individual layer thickness ranging from 5 nm to 300 nm is investigated by nanoindentation testing. The experimental results reveal that the composite still exhibits indentation-induced plastic deformation instability and the loss of strain hardening ability at the nanometer scale even if the composite contains two kinds of layer interfaces (face centered cubic(FCC)/FCC and FCC/ body centered cubic) simultaneously. Plastic deformation behavior of the nanolayered material was evaluated and analyzed.
Resumo:
We present and analyze several gaze-based graphical password schemes based on recall and cued-recall of grid points; eye-trackers are used to record user's gazes, which can prevent shoulder-surfing and may be suitable for users with disabilities. Our 22-subject study observes that success rate and entry time for the grid-based schemes we consider are comparable to other gaze-based graphical password schemes. We propose the first password security metrics suitable for analysis of graphical grid passwords and provide an in-depth security analysis of user-generated passwords from our study, observing that, on several metrics, user-generated graphical grid passwords are substantially weaker than uniformly random passwords, despite our attempts at designing schemes to improve quality of user-generated passwords.
Resumo:
In practical cases for active noise control (ANC), the secondary path has usually a time varying behavior. For these cases, an online secondary path modeling method that uses a white noise as a training signal is required to ensure convergence of the system. The modeling accuracy and the convergence rate are increased when a white noise with a larger variance is used. However, the larger variance increases the residual noise, which decreases performance of the system and additionally causes instability problem to feedback structures. A sudden change in the secondary path leads to divergence of the online secondary path modeling filter. To overcome these problems, this paper proposes a new approach for online secondary path modeling in feedback ANC systems. The proposed algorithm uses the advantages of white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the algorithm and to prevent the instability effect of the white noise. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to correct the secondary path estimation. In addition, the proposed method models the secondary path without the need of using off-line estimation of the secondary path. Considering the above features increases the convergence rate and modeling accuracy, which results in a high system performance. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
Papagoite is a silicate mineral named after an American Indian tribe and was used as a healing mineral. Papagoite CaCuAlSi2O6(OH)3 is a hydroxy mixed anion compound with both silicate and hydroxyl anions in the formula. The structural characterization of the mineral papagoite remains incomplete. Papagoite is a four-membered ring silicate with Cu2+ in square planar coordination. The intense sharp Raman band at 1053 cm−1 is assigned to the ν1 (A 1g) symmetric stretching vibration of the SiO4 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in papagoite is strongly distorted. A very intense Raman band observed at 630 cm−1 with a shoulder at 644 cm−1 is assigned to the ν4 vibrational modes. Intense Raman bands at 419 and 460 cm−1 are attributed to the ν2 bending modes. Intense Raman bands at 3545 and 3573 cm−1 are assigned to the stretching vibrations of the OH units. Low-intensity Raman bands at 3368 and 3453 cm−1 are assigned to water stretching modes. It is suggested that the formula of papagoite is more likely to be CaCuAlSi2O6(OH)3 · xH2O. Hence, vibrational spectroscopy has been used to characterize the molecular structure of papagoite.
Resumo:
utomatic pain monitoring has the potential to greatly improve patient diagnosis and outcomes by providing a continuous objective measure. One of the most promising methods is to do this via automatically detecting facial expressions. However, current approaches have failed due to their inability to: 1) integrate the rigid and non-rigid head motion into a single feature representation, and 2) incorporate the salient temporal patterns into the classification stage. In this paper, we tackle the first problem by developing a “histogram of facial action units” representation using Active Appearance Model (AAM) face features, and then utilize a Hidden Conditional Random Field (HCRF) to overcome the second issue. We show that both of these methods improve the performance on the task of pain detection in sequence level compared to current state-of-the-art-methods on the UNBC-McMaster Shoulder Pain Archive.
Resumo:
The arrojadite-(KFe) mineral has been analyzed using a combination of scanning electron microscopy and a combination of Raman and infrared spectroscopy. The origin of the mineral is Rapid Creek sedimentary phosphatic iron formation, northern Yukon. The formula of the mineral was determined as K2.06Na2Ca0.89Na3.23(Fe7.82Mg4.40Mn0.78)Σ13.00Al1.44(PO4)10.85(PO3OH0.23)(OH)2. The complexity of the mineral formula is reflected in the spectroscopy. Raman bands at 975, 991 and 1005 cm−1 with shoulder bands at 951 and 1024 cm−1 are assigned to the View the MathML source ν1 symmetric stretching modes. The Raman bands at 1024, 1066, 1092, 1123, 1148 and 1187 cm−1 are assigned to the View the MathML source ν3 antisymmetric stretching modes. A series of Raman bands observed at 540, 548, 557, 583, 604, 615 and 638 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The ν2 PO4 and H2PO4 bending modes are observed at 403, 424, 449, 463, 479 and 513 cm−1. Hydroxyl and water stretching bands are readily observed. Vibrational spectroscopy enables new information about the complex phosphate mineral arrojadite-(KFe) to be obtained.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of cyrilovite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Cyrilovite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of cyrilovite with that of wardite. The Raman spectrum of cyrilovite in the 800–1400 cm−1 spectral range shows two intense bands at 992 and 1055 cm−1 assigned to the ν1View the MathML source symmetric stretching vibrations. A series of low intensity bands at 1105, 1136, 1177 and 1184 cm−1 are assigned to the ν3View the MathML source antisymmetric stretching modes. The infrared spectrum of cyrilovite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 970 and 1007 cm−1 and are attributed to the ν1View the MathML source symmetric stretching mode. Raman bands are observed at 612 and 631 cm−1 and are assigned to the ν4 out of plane bending modes of the View the MathML source unit. In the 2600–3800 cm−1 spectral range, intense Raman bands for cyrilovite are found at 3328 and 3452 cm−1 with a broad shoulder at 3194 cm−1 and are assigned to OH stretching vibrations. Sharp infrared bands are observed at 3485 and 3538 cm−1. Raman spectroscopy complimented with infrared spectroscopy has enabled the structure of cyrilovite to be ascertained and compared with that of wardite.
Resumo:
The mineral weloganite Na2Sr3Zr(CO3)6·3H2O has been studied by using vibrational spectroscopy and a comparison is made with the spectra of weloganite with other carbonate minerals. Weloganite is member of the mckelveyite group that includes donnayite-(Y) and mckelveyite-(Y). The Raman spectrum of weloganite is characterized by an intense band at 1082 cm−1 with shoulder bands at 1061 and 1073 cm−1, attributed to the View the MathML source symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of View the MathML source symmetric stretching vibration varies with mineral composition. The Raman bands at 1350, 1371, 1385, 1417, 1526, 1546, and 1563 cm−1 are assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for weloganite is significant in that it shows distortion of the carbonate anion in the mineral structure. The Raman band observed at 870 cm−1 is assigned to the (CO3)2− ν2 bending mode. Raman bands observed for weloganite at 679, 682, 696, 728, 736, 749, and 762 cm−1 are assigned to the (CO3)2− ν4 bending modes. A comparison of the vibrational spectra is made with that of the rare earth carbonates decrespignyite, bastnasite, hydroxybastnasite, parisite, and northupite.
Resumo:
We sought to determine the impact of electrospinning parameters on a trustworthy criterion that could evidently improve the maximum applicability of fibrous scaffolds for tissue regeneration. We used an image analysis technique to elucidate the web permeability index (WPI) by modeling the formation of electrospun scaffolds. Poly(3-hydroxybutyrate) (P3HB) scaffolds were fabricated according to predetermined conditions of levels in a Taguchi orthogonal design. The material parameters were the polymer concentration, conductivity, and volatility of the solution. The processing parameters were the applied voltage and nozzle-to-collector distance. With a law to monitor the WPI values when the polymer concentration or the applied voltage was increased, the pore interconnectivity was decreased. The quality of the jet instability altered the pore numbers, areas, and other structural characteristics, all of which determined the scaffold porosity and aperture interconnectivity. An initial drastic increase was observed in the WPI values because of the chain entanglement phenomenon above a 6 wt % P3HB content. Although the solution mixture significantly (p < 0.05) changed the scaffold architectural characteristics as a function of the solution viscosity and surface tension, it had a minor impact on the WPI values. The solution mixture gained the third place of significance, and the distance was approved as the least important factor.
Resumo:
We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularise the ill-posedness arising from the viscous (Saffman-Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilising the boundary, and kinetic undercooling destabilising it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or "slit" of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilises the applicability of complex variable theory to Hele-Shaw flow.