940 resultados para SEEBECK COEFFICIENT
Resumo:
Using the critical percolation conductance method the energy-dependent diffusion coefficient associated with thermally assisted transfer of the R1 line excitation between single Cr3+ ions with strain-induced randomness has been calculated in the 4A2 to E(2E) transition energies. For localized states sufficiently far away from the mobility edge the energy transfer is dominated by dipolar interactions, while very close to the mobility edge it is determined by short-range exchange interactions. Using the above energy-dependent diffusion coefficient a macroscopic diffusion equation is solved for the rate of light emission by Cr3+ ion-pair traps to which single-ion excitations are transferred. The dipolar mechanism leads to good agreement with recent measurements of the pair emission rate by Koo et al. (Phys. Rev. Lett., vol.35, p.1669 (1975)) right up to the mobility edge.
Resumo:
Sesbania mosaic virus (SMV) is an isometric, ss-RNA plant virus found infecting Sesbania grandiflora plants in fields near Tirupathi, South India. The virus particles, which sediment at 116 S at pH 5.5, swell upon treatment with EDTA at pH 7.5 resulting in the reduction of the sedimentation coefficient to 108 S. SMV coat protein amino acid sequence was determined and found to have approximately 60% amino acid sequence identity with that of southern bean mosaic virus (SBMV). The amino terminal 60 residue segment, which contains a number of positively charged residues, is less well conserved between SMV and SBMV when compared to the rest of the sequence. The 3D structure of SMV was determined at 3.0 Å resolution by molecular replacement techniques using SBMV structure as the initial phasing model. The icosahedral asymmetric unit was found to contain four calcium ions occurring in inter subunit interfaces and three protein subunits, designated A, B and C. The conformation of the C subunit appears to be different from those of A and B in several segments of the polypeptide. These observations coupled with structural studies on SMV partially depleted of calcium suggest a plausible mechanisms for the initiation of the disassembly of the virus capsid.
Resumo:
Seven different shaped modified proportional V-notches were designed and pertinent data for their use are given in tables 1 - 4. It is shown that the indication accuracies of these weirs are more than that of the conventional V-notch. For five of the designed weirs the indication accuracies are more than that of the conventional rectangular weir at lower heads of flow. All these proportional weirs, except the parabolic based weir, have added advantages over the V-notch in regard to fixing and finding the crest level. Experiments with five weirs (four symmetrical and one unsymmetrical) having rectangular bases and one (symmetrical) with a parabolic base show very good agreement with the theory and give consistent values for the coefficient of discharge, Cd, varying between 0.588 and 0.605, within the ranges of the experiments.
Resumo:
Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.
Resumo:
A non-dimensional parameter descriptive of the plowing nature of surfaces is proposed for the case of sliding between a soft and a relatively hard metallic pair. From a set of potential parameters which can be descriptive of the phenomenon, dimensionless groups are formulated and the influence of each one of them is analyzed. A non-dimensional parameter involving the root-mean square deviation (R-q) and the centroidal frequency (F-mean) deducted from the power-spectrum is found to have a high degree of correlation (as high as 0.93) with the coefficient of friction obtained in sliding experiments under lubricated condition.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.
Resumo:
The information on altitude distribution of aerosols in the atmosphere is essential in assessing the impact of aerosol warming on thermal structure and stability of the atmosphere.In addition, aerosol altitude distribution is needed to address complex problems such as the radiative interaction of aerosols in the presence of clouds. With this objective,an extensive, multi-institutional and multi-platform field experiment (ICARB-Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP) over continental India and adjoining oceans during March to May 2006. Here, we present airborne LIDAR measurements carried out over the east Coast of the India during the ICARB field campaign. An increase in aerosol extinction (scattering + absorption) was observed from the surface upwards with a maximum around 2 to 4 km. Aerosol extinction at higher atmospheric layers (>2 km) was two to three times larger compared to that of the surface. A large fraction (75-85%) of aerosol column optical depth was contributed by aerosols located above 1 km. The aerosol layer heights (defined in this paper as the height at which the gradient in extinction coefficient changes sign) showed a gradual decrease with an increase in the offshore distance. A large fraction (60-75%) of aerosol was found located above clouds indicating enhanced aerosol absorption above clouds. Our study implies that a detailed statistical evaluation of the temporal frequency and spatial extent of elevated aerosol layers is necessary to assess their significance to the climate. This is feasible using data from space-borne lidars such as CALIPSO,which fly in formation with other satellites like MODIS AQUA and MISR, as part of the A-Train constellation.
Resumo:
Silica segregation at two grain junctions or in amorphous triple junction pockets can influence creep by altering the grain-boundary diffusion coefficient. Although the addition of silica to superplastic yttria-stabilized tetragonal zirconia enhances ductility, differences in reported creep parameters have limited critical identification of rate controlling mechanisms. The present study on a pure 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) and 3YTZ with 0.39 or 3.9 wt% silica involved a detailed characterization of creep over a wide range of experimental conditions and also tracer diffusion measurements. The data broadly show transitions in creep stress exponents from n∼1 to ∼2 to ∼3 with a decrease in the stress. The data at high stresses are consistent with Coble diffusion creep, and creep at lower stresses is attributed to interface-controlled diffusion creep. Measurements indicated that silica does not have any significant influence on grain boundary or lattice diffusion, and this is consistent with the observation that 3YTZ and 3YTZ with 0.39% or 3.9% silica exhibit essentially identical creep behavior in the Coble creep regime. Silica influences the interface control process so that the transitions in stress exponents are pushed to lower stresses with an increase in silica content.
Resumo:
The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.
Resumo:
This paper investigates numerically the heat transfer characteristics of confined slot jet impingement on a pin-fin heat sink. A variety of pin-fin heat sinks is investigated, and the resulting enhancement of heat transfer studied. The distribution of heat transfer coefficient on the top surface of the base plate and that along the fin height are examined. Both steady and pulsated jets are studied. It is observed that for a steady jet impingement on a pin-fin heat sink, the effective heat transfer coefficient increases with fin height, leading to a corresponding decrease in base plate temperature for the same heat flux. In the case of pulsated jets, the influence of pulse frequency and the Reynolds number is examined, and their effect on the effective heat transfer coefficient is studied.
Resumo:
Polycrystalline diamond coatings have been grown on unpolished side of Si(100) wafers by hot filament chemical vapour deposition process. The morphology of the grown coatings has been varied from cauliflower morphology to faceted morphology by manipulation of the growth temperature from 700 degrees C to 900 degrees C and methane gas concentration from 3% to 1.5%. It is found that the coefficient of friction of the coatings under high vacuum of 133.32 x 10(-7) Pa (10(-7) torr) with nanocrystalline grains can be manipulated to 0.35 to enhance tribological behaviour of bare Si substrates.
Resumo:
Nonlinear optical properties and carrier relaxation dynamics in graphene, suspended in three different solvents, are investigated using femtosecond (80 fs pulses) Z-scan and degenerate pump-probe spectroscopy at 790 nm. The results demonstrate saturable absorption property of graphene with a nonlinear absorption coefficient, beta of (similar to 2-9) x 10(-8) cm/W. Two distinct time scales associated with the relaxation of photoexcited carriers, a fast one in the range of 130-330 fs (related to carrier-carrier scattering) followed by it slower one in 3.5-4.9 ps range (associated with carrier-phonon scattering) are observed. (C) 2009 American Institute of Physics.
Resumo:
The copolymers, poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA), of different compositions were synthesized and characterized. The effect of alkyl acrylate content, alkyl group substituents and solvents on the ultrasonic degradation of these copolymers was studied. A model based on continuous distribution kinetics was used to study the kinetics of degradation. The rate coefficients were obtained by fitting the experimental data with the model. The linear dependence of the rate coefficients on the logarithm of the vapor pressure of the solvent indicated that vapor pressure is the crucial parameter that controls the degradation process. The rate of degradation increases with an increase in the alkyl acrylate content. At any particular copolymer composition, the rate of degradation follows the order: PMMAMA > PMMAEA > PMMABA. It was observed that the degradation rate coefficient varies linearly with the mole percentage of the alkyl acrylate in the copolymer.
Resumo:
Aim: To characterize the inhibition of platelet function by paracetamol in vivo and in vitro, and to evaluate the possible interaction of paracetamol and diclofenac or valdecoxib in vivo. To assess the analgesic effect of the drugs in an experimental pain model. Methods: Healthy volunteers received increasing doses of intravenous paracetamol (15, 22.5 and 30 mg/kg), or the combination of paracetamol 1 g and diclofenac 1.1 mg/kg or valdecoxib 40 mg (as the pro-drug parecoxib). Inhibition of platelet function was assessed with photometric aggregometry, the platelet function analyzer (PFA-100), and release of thromboxane B2. Analgesia was assessed with the cold pressor test. The inhibition coefficient of platelet aggregation by paracetamol was determined as well as the nature of interaction between paracetamol and diclofenac by an isobolographic analysis in vitro. Results: Paracetamol inhibited platelet aggregation and TxB2-release dose-dependently in volunteers and concentration-dependently in vitro. The inhibition coefficient was 15.2 mg/L (95% CI 11.8 - 18.6). Paracetamol augmented the platelet inhibition by diclofenac in vivo, and the isobole showed that this interaction is synergistic. Paracetamol showed no interaction with valdecoxib. PFA-100 appeared insensitive in detecting platelet dysfunction by paracetamol, and the cold-pressor test showed no analgesia. Conclusions: Paracetamol inhibits platelet function in vivo and shows synergism when combined with diclofenac. This effect may increase the risk of bleeding in surgical patients with an impaired haemostatic system. The combination of paracetamol and valdecoxib may be useful in patients with low risk for thromboembolism. The PFA-100 seems unsuitable for detection of platelet dysfunction and the cold-pressor test seems unsuitable for detection of analgesia by paracetamol.