927 resultados para SCANNING SMALL-ANGLE X-RAY SCATTERING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray laser fluorescence spectroscopy of the 2s-2p transition in Li-like ions is promising to become a widely applicable tool to provide information on the nuclear charge radii of stable and radioactive isotopes. For performing such experiments at the Experimental Storage Ring ESR, and the future NESR within the FAIR Project, a grazing incidence pumped (GRIP) x-ray laser (XRL) was set up at GSI Darmstadt using PHELIX (Petawatt High Energy Laser for heavy Ions eXperiments). The experiments demonstrated that lasing using the GRIP geometry could be achieved with relatively low pump energy, a prerequisite for higher repetition rate. In the first chapter the need of a plasma XRL is motivated and a short history of the plasma XRL is presented. The distinctive characteristic of the GRIP method is the controlled deposition of the pump laser energy into the desired plasma density region. While up to now the analysis performed were mostly concerned with the plasma density at the turning point of the main pump pulse, in this thesis it is demonstrated that also the energy deposition is significantly modified for the GRIP method, being sensitive in different ways to a large number of parameters. In the second chapter, the theoretical description of the plasma evolution, active medium and XRL emission properties are reviewed. In addition an innovative analysis of the laser absorption in plasma which includes an inverse Bremsstrahlung (IB) correction factor is presented. The third chapter gives an overview of the experimental set-up and diagnostics, providing an analytical formula for the average and instantaneous traveling wave speed generated with a tilted, on-axis spherical mirror, the only focusing system used up to now in GRIP XRL. The fourth chapter describes the experimental optimization and results. The emphasis is on the effect of the incidence angle of the main pump pulse on the absorption in plasma and on output and gain in different lasing lines. This is compared to the theoretical results for two different incidence angles. Significant corrections for the temperature evolution during the main pump pulse due to the incidence angle are demonstrated in comparison to a simple analytical model which does not take into account the pumping geometry. A much better agreement is reached by the model developed in this thesis. An interesting result is also the appearance of a central dip in the spatially resolved keV emission which was observed in the XRL experiments for the first time and correlates well with previous near field imaging and plasma density profile measurements. In the conclusion also an outlook to the generation of shorter wavelength XRL’s is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work is focused on the use of selected core-level x-ray spectroscopies to study semiconductor materials of great technological interest and on the development of a new implementation of appearance potential spectroscopy. Core-level spectroscopies can be exploited to study these materials with a local approach since they are sensitive to the electronic structure localized on a chemical species present in the sample examined. This approach, in fact, provides important micro-structural information that is difficult to obtain with techniques sensitive to the average properties of materials. In this thesis work we present a novel approach to the study of semiconductors with core-level spectroscopies based on an original analysis procedure that leads to an insightful understanding of the correlation between the local micro-structure and the spectral features observed. In particular, we studied the micro-structure of Hydrogen induced defects in nitride semiconductors, since the analysed materials show substantial variations of optical and electronic properties as a consequence of H incorporation. Finally, we present a novel implementation of soft x-ray appearance potential spectroscopy, a core-level spectroscopy that uses electrons as a source of excitation and has the great advantage of being an in-house technique. The original set-up illustrated was designed to reach a high signal-to-noise ratio for the acquisition of good quality spectra that can then be analyzed in the framework of the real space full multiple scattering theory. This technique has never been coupled with this analysis approach and therefore our work unite a novel implementation with an original data analysis method, enlarging the field of application of this technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within this thesis a new double laser pulse pumping scheme for plasma-based, transient collisionally excited soft x-ray lasers (SXRL) was developed, characterized and utilized for applications. SXRL operations from ~50 up to ~200 electron volt were demonstrated applying this concept. As a central technical tool, a special Mach-Zehnder interferometer in the chirped pulse amplification (CPA) laser front-end was developed for the generation of fully controllable double-pulses to optimally pump SXRLs.rnThis Mach-Zehnder device is fully controllable and enables the creation of two CPA pulses of different pulse duration and variable energy balance with an adjustable time delay. Besides the SXRL pumping, the double-pulse configuration was applied to determine the B-integral in the CPA laser system by amplifying short pulse replica in the system, followed by an analysis in the time domain. The measurement of B-integral values in the 0.1 to 1.5 radian range, only limited by the reachable laser parameters, proved to be a promising tool to characterize nonlinear effects in the CPA laser systems.rnContributing to the issue of SXRL pumping, the double-pulse was configured to optimally produce the gain medium of the SXRL amplification. The focusing geometry of the two collinear pulses under the same grazing incidence angle on the target, significantly improved the generation of the active plasma medium. On one hand the effect was induced by the intrinsically guaranteed exact overlap of the two pulses on the target, and on the other hand by the grazing incidence pre-pulse plasma generation, which allows for a SXRL operation at higher electron densities, enabling higher gain in longer wavelength SXRLs and higher efficiency at shorter wavelength SXRLs. The observation of gain enhancement was confirmed by plasma hydrodynamic simulations.rnThe first introduction of double short-pulse single-beam grazing incidence pumping for SXRL pumping below 20 nanometer at the laser facility PHELIX in Darmstadt (Germany), resulted in a reliable operation of a nickel-like palladium SXRL at 14.7 nanometer with a pump energy threshold strongly reduced to less than 500 millijoule. With the adaptation of the concept, namely double-pulse single-beam grazing incidence pumping (DGRIP) and the transfer of this technology to the laser facility LASERIX in Palaiseau (France), improved efficiency and stability of table-top high-repetition soft x-ray lasers in the wavelength region below 20 nanometer was demonstrated. With a total pump laser energy below 1 joule the target, 2 mircojoule of nickel-like molybdenum soft x-ray laser emission at 18.9 nanometer was obtained at 10 hertz repetition rate, proving the attractiveness for high average power operation. An easy and rapid alignment procedure fulfilled the requirements for a sophisticated installation, and the highly stable output satisfied the need for a reliable strong SXRL source. The qualities of the DGRIP scheme were confirmed in an irradiation operation on user samples with over 50.000 shots corresponding to a deposited energy of ~ 50 millijoule.rnThe generation of double-pulses with high energies up to ~120 joule enabled the transfer to shorter wavelength SXRL operation at the laser facility PHELIX. The application of DGRIP proved to be a simple and efficient method for the generation of soft x-ray lasers below 10 nanometer. Nickel-like samarium soft x-ray lasing at 7.3 nanometer was achieved at a low total pump energy threshold of 36 joule, which confirmed the suitability of the applied pumping scheme. A reliable and stable SXRL operation was demonstrated, due to the single-beam pumping geometry despite the large optical apertures. The soft x-ray lasing of nickel-like samarium was an important milestone for the feasibility of applying the pumping scheme also for higher pumping pulse energies, which are necessary to obtain soft x-ray laser wavelengths in the water window. The reduction of the total pump energy below 40 joule for 7.3 nanometer short wavelength lasing now fulfilled the requirement for the installation at the high-repetition rate operation laser facility LASERIX.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 microm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational study of line-focus generation was done using a self-written ray-tracing code and compared to experimental data. Two line-focusing geometries were compared, i.e., either exploiting the sagittal astigmatism of a tilted spherical mirror or using the spherical aberration of an off-axis- illuminated spherical mirror. Line focusing by means of astigmatism or spherical aberration showed identical results as expected for the equivalence of the two frames of reference. The variation of the incidence angle on the target affects the line-focus length, which affects the amplification length such that as long as the irradiance is above the amplification threshold, it is advantageous to have a longer line focus. The amplification threshold is physically dependent on operating parameters and plasma-column conditions and in the present study addresses four possible cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When patients enter our emergency room with suspected multiple injuries, Statscan provides a full body anterior and lateral image for initial diagnosis, and then zooms in on specific smaller areas for a more detailed evaluation. In order to examine the possible role of Statscan in the management of multiply injured patients we implemented a modified ATLS((R)) algorithm, where X-ray of C-spine, chest and pelvis have been replaced by single-total a.p./lat. body radiograph. Between 15 October 2006 and 1 February 2007 143 trauma patients (mean ISS 15+/-14 (3-75)) were included. We compared the time in resuscitation room to 650 patients (mean ISS 14+/-14 (3-75)) which were treated between 1 January 2002 and 1 January 2004 according to conventional ATLS protocol. The total-body scanning time was 3.5 min (3-6 min) compared to 25.7 (8-48 min) for conventional X-rays, The total ER time was unchanged 28.7 min (13-58 min) compared to 29.1 min (15-65 min) using conventional plain radiography. In 116/143 patients additional CT scans were necessary. In 98/116 full body trauma CT scans were performed. In 18/116 patients selective CT scans were ordered based on Statscan findings. In 43/143 additional conventional X-rays had to be performed, mainly due to inadequate a.p. views of fractured bones. All radiographs were transmitted over the hospital network (Picture Archiving and Communication System, PACS) for immediate simultaneous viewing at different places. The rapid availability of images for interpretation because of their digital nature and the reduced need for repeat exposures because of faulty radiography are also felt to be strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATLS Guidelines recommend single plain radiography of the chest and pelvis as part of the primary survey. Such isolated radiographs, usually obtained by bedside machines, can result in limited, low-quality studies that can adversely affect management. A new digital, low-radiation imaging device, the "Lodox Statscan" (LS), provides full-body anterior and lateral views based on enhanced linear slot-scanning technology in just over 5 minutes. We have the first LS in Europe at our facility. The aim of this study was to compare LS with computed tomographic (CT) scanning, as the gold standard, to determine the sensitivity of LS investigation in detecting injuries to the chest, thoracolumbar spine, and pelvis from our own experience, and to compare our findings with those of conventional radiography in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential studies of osteopenic bone disease in small animals require the availability of non-invasive, accurate and precise methods to assess bone mineral content (BMC) and bone mineral density (BMD). Dual-energy X-ray absorptiometry (DXA), which is currently used in humans for this purpose, can also be applied to small animals by means of adapted software. Precision and accuracy of DXA was evaluated in 10 rats weighing 50-265 g. The rats were anesthetized with a mixture of ketamine-xylazine administrated intraperitoneally. Each rat was scanned six times consecutively in the antero-posterior incidence after repositioning using the rat whole-body software for determination of whole-body BMC and BMD (Hologic QDR 1000, software version 5.52). Scan duration was 10-20 min depending on rat size. After the last measurement, rats were sacrificed and soft tissues were removed by dermestid beetles. Skeletons were then scanned in vitro (ultra high resolution software, version 4.47). Bones were subsequently ashed and dissolved in hydrochloric acid and total body calcium directly assayed by atomic absorption spectrophotometry (TBCa[chem]). Total body calcium was also calculated from the DXA whole-body in vivo measurement (TBCa[DXA]) and from the ultra high resolution measurement (TBCa[UH]) under the assumption that calcium accounts for 40.5% of the BMC expressed as hydroxyapatite. Precision error for whole-body BMC and BMD (mean +/- S.D.) was 1.3% and 1.5%, respectively. Simple regression analysis between TBCa[DXA] or TBCa[UH] and TBCa[chem] revealed tight correlations (n = 0.991 and 0.996, respectively), with slopes and intercepts which were significantly different from 1 and 0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small trees of gas-exchanging pulmonary airways which are fed by the most distal purely conducting airways are called acini and represent the functional gas-exchanging units. The three-dimensional architecture of the acini has a strong influence on ventilation and particle deposition. Due to the difficulty to identify individual acini on microscopic lung sections the knowledge about the number of acini and their biological parameters like volume, surface area, and number of alveoli per acinus are limited. We developed a method to extract individual acini from lungs imaged by high-resolution synchrotron radiation based X-ray tomographic microscopy and estimated their volume, surface area and number of alveoli. Rat acini were isolated by semiautomatically closing the airways at the transition from conducting to gas-exchanging airways. We estimated a mean internal acinar volume of 1.148mm(3), a mean acinar surface area of 73.9mm(2), and a mean of 8470 alveoli per acinus. Assuming that the acini are similarly sized throughout different regions of the lung, we calculated that a rat lung contains 5470±833 acini. We conclude that our novel approach is well suited for the fast and reliable characterization of a large number of individual acini in healthy, diseased, or transgenic lungs of different species including humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4′-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of [similar]70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of [similar]140 μm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into −P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of [similar]20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (DA), (AA), (DD) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.