860 resultados para Room-Temperature Ferromagnetism


Relevância:

80.00% 80.00%

Publicador:

Resumo:

CaYAl(3)O(7):Eu(3+) phosphor was prepared at furnace temperatures as low as 550A degrees C by a solution combustion method. The formation of crystalline CaYAl(3)O(7):Eu(3+) was confirmed by powder X-Ray diffraction pattern. The prepared phosphor was characterized by SEM, FT-IR and photoluminescence techniques. Photoluminescence measurements indicated that emission spectrum is dominated by the red peak located at 618 nm due to the (5)D(0)-(7)F(2) electric dipole transition of Eu(3+) ions. Electron Spin Resonance (ESR) studies were carried out to identify the centres responsible for the thermoluminescence (TL) peaks. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0126 is identified as an O(-) ion while centre II with an isotropic g-factor 2.0060 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F(+) centre appears to correlate with the observed high temperature TL peak in CaYAl(3)O(7):Eu(3+) phosphor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Europium-doped lanthanum aluminate (LaAlO(3)) powder was prepared by using a combustion method. The crystallization, surface morphology, specific surface area and luminescence properties of the samples have been investigated. Photoluminescence studies of Eu doped LaAlO(3) showed orange-reddish emission due to Eu(3+) ions. LaAlO(3):Eu(3+) exhibits one thermally stimulated luminescence (TSL) peak around 400 degrees C. Room temperature electron spin resonance spectrum of irradiated phosphor appears to be a superposition of two centres. One of them (centre I) with principal g-value 2.017 is identified as an O(-) centre while centre II with an isotropic g-value 2.011 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre observed during thermal annealing around 300 degrees C grows with the annealing temperature. This centre (assigned to F(+) centre) originates from an F-centre (oxygen vacancy with two electrons) and the F-centre along with the associated F(+) centre appear to correlate with the observed TSL peak in LaAlO(3):Eu(3+) phosphor. The activation energy for this peak has been determined to be 1.54 eV from TSL data. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Terbium (Tb) doped LaMgAl(11)O(19) phosphors have been prepared by the combustion of corresponding metal nitrates (oxidizer) and urea (fuel) at furnace temperature as low as 500 C Combustion synthesized powder phosphor was characterized by X-ray diffraction and field emission scanning electron microscopy techniques LaMgAl(11)O(19) doped with trivalent terbium ions emit weakly in blue and orange light region and strongly in green light region when excited by the ultraviolet light of 261 nm Electron Spin Resonance (ESR) studies were carried out to study the defect centres Induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least two defect centres One of the centres (centre I) with principal g-values g(parallel to) = 2 0417 and g(perpendicular to) = 2 0041 is identified as O(2)(-) ion while centre II with an axially symmetric g-tensor with principal values g(parallel to) = 19698 and g(perpendicular to) = 1 9653 is assigned to an F(+) centre (singly ionized oxygen vacancy) An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons) The F centre and also the F+ centre appear to correlate with the observed high temperature TSL peak in LaMgAl(11)O(19) Tb phosphor (C) 2010 Elsevier Masson SAS All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermoluminescence (TL) and optically stimulated luminescence (OSL) processes in BeO phosphor. Two defect centres were identified in irradiated BeO phosphor by ESR measurements, which were carried out at room temperature and these were assigned to an O(-) ion and Al(2+) centre. The O(-) ion (hole centre) correlates with the main 190 degrees C TL peak. The Al(2+) centre (electron centre), which acts as a recombination centre, also correlates to the 190 degrees C TL peak. A third centre, observed during thermal annealing studies, is assigned to an O(-) ion and is related to the high temperature TL at 317 degrees C. This centre also appears to be responsible for the observed OSL process in BeO phosphor. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

YAG phosphor powders doped/codoped with Er(3+)/(Er(3+) + Yb(3+)) have been synthesised by using the solution combustion method. The effect of direct pumping into the (4)I(11/2) level under 980 nm excitation of doped/codoped Er(3+)/Yb(3+)-Er(3+) in Y(3)Al(5)O(12) (YAG) phosphor responsible for an infrared (IR) emission peaking at similar to 1.53 mu m corresponding to the (4)I(13/2)->(4)I(15/2) transition has been studied. YAG exhibits three thermally-stimulated luminescence (TSL) peaks at around 140A degrees C, 210A degrees C and 445A degrees C. Electron spin resonance (ESR) studies were carried out to identify the centres responsible for the TSL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0176 is identified as O(-) ion, while centre II with an isotropic g-factor 2.0020 is assigned to an F(+) centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal-annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and these two centres appear to correlate with the observed high-temperature TSL peak in YAG phosphor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er and Yb co-doped ZnAl(2)O(4) phosphors were prepared by solution combustion synthesis and the identification of Er and Yb were done by energy-dispersive X-ray analysis (EDX) studies. A luminescence at 1.5 mu m, due to the (4)I(13/2) ->(4)I(15/2) transition, has been studied in the NIR region in Er and Yb co-doped ZnAl(2)O(4) phosphors upon 980 nm CW pumping. Er-doped ZnAl(2)O(4) exhibits two thermally stimulated luminescence (TSL) peaks around 174A degrees C and 483A degrees C, while Yb co-doped ZnAl(2)O(4) exhibits TSL peaks around 170A degrees C and 423A degrees C. Electron spin resonance (ESR) studies were carried out to identify defect centres responsible for TSL peaks observed in the phosphors. Room temperature ESR spectrum appears to be a superposition of two distinct centres. These centres are assigned to an O(-) ion and F(+) centre. O(-) ion appears to correlate with the 174A degrees C TSL peak and F(+) centre appears to relate with the high temperature TSL peak at 483A degrees C in ZnAl(2)O(4):Er phosphor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er(3+) doped Y(2)O(3) phosphor was prepared by the solution combustion method and characterized using powder x-ray diffraction and energy-dispersive analysis of x-ray mapping studies. Room temperature near infrared (NIR) to green up-conversion (UC) emissions in the region 520-580 nm {((2)H(11/2), (4)S(3/2)) -> (4)I(15/2)} and red UC emissions in the region 650-700 nm ((4)F(9/2) -> (4)I(15/2)) of Er(3+) ions have been observed upon direct excitation to the (4)I(11/2) level using similar to 972 nm laser radiation of nanosecond pulses. The possible mechanisms for the UC processes have been discussed on the basis of the energy level scheme, the pump power dependence as well as based on the temporal evolution. The excited state absorption is observed to be the dominant mechanism for the UC process. Y(2)O(3) : Er exhibits one thermally stimulated luminescence (TSL) peak around 367 degrees C. Electron spin resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TSL peak. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least three distinct centres. One of them (centre I) with principal g-values g(parallel to) = 2.0415 and g(perpendicular to) = 2.0056 is identified as O(2)(-) centre while centre II with an isotropic g-factor 2.0096 is assigned to an F(+)-centre (singly ionized oxygen vacancy). Centre III is also assigned to an F(+)-centre with a small g-factor anisotropy (g(parallel to) = 1.974 and g(perpendicular to) = 1.967). Additional defect centres are observed during thermal annealing experiments and one of them appearing around 330 degrees C grows with the annealing temperature. This centre (assigned to an F(+)-centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and the F-centre appears to correlate with the observed TSL peak in Y2O3 : Er phosphor. The trap depth for this peak has been determined to be 0.97 eV from TSL data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optical absorption spectra of two samples of grossular have been measured at room temperature. An intense charge transfer band (UVCT) of iron extends to the visible and near infrared region. Some peaks associated to Fe3+ ions in tetrahedral and octahedral positions have been identified and their energy levels were computed. Mn2+ and Fe2+ ions are responsible with some bands and probably these ions occupy dodecahedral positions. No change in the intensity of optical absorption spectra were found after gamma dose, but only the 505 nm band decreases with irradiation. The OH spectra, consisting of OH overtones at 2750nm and asymmetric OH bands in the near infrared region were observed in the two samples. The heat treatment produces Fe2+ -> Fe3+ and Mn2+ -> Mn3+ by oxidation. This last was observed in sample II only. The thermally stimulated luminescence of both grossular samples has been investigated. Due to differences in iron and manganese concentration, not only a large difference has been observed in their optical absorption behavior, but also a striking difference in their thermoluminescent behavior. Actually, it is not clear whether other impurities such as Ti, Na and K that are present in quite different concentration in grossular I and II are also contributing to the thermoluminescenct properties of both samples. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of pre-heating resin composite photo-cured with light-curing units (LCU) by FT-IR. Twenty specimens were made in a metallic mold (4 mm diameter x 2 mm thick) from composite resin-Tetric Ceram (R) (Ivoclar/Vivadent) at room temperature (25 degrees C) and pre heated to 37, 54, and 60 degrees C. The specimens were cured with halogen curing light (QTH) and light emitted by diodes (LED) during 40 s. Then, the specimens were pulverized, pressed with KBr and analyzed with FT-IR. The data were submitted to statistical analysis of variance and Kruskal-Wallis test. Study data showed no statistically significant difference to the degree of conversion for the different light curing units (QTH and LED) (p > 0.05). With the increase of temperature there was significant increase in the degree of conversion (p < 0.05). In this study were not found evidence that the light curing unit and temperature influenced the degree of conversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this communication, we report on the formation of calcium hexahydroxodizincate dehydrate, CaZn(2)(OH)(6)center dot 2H(2)O (CZO) powders under microwave-hydrothermal (MH) conditions. These powders were analyzed by X-ray diffraction (XRD), Field-emission gum scanning electron microscopy (FEG-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns confirmed that the pure CZO phase was obtained after MH processing performed at 130 degrees C for 2 h. FEG-SEM micrographs indicated that the morphological modifications as well as the growth of CZO microparticles are governed by Ostwald-ripening and coalescence mechanisms. UV-vis spectra showed that this material have an indirect optical band gap. The pure CZO powders exhibited an yellow PL emission when excited by 350 nm wavelength at room temperature. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, Ba(Zr(0.25)Ti(0.75))O(3) ceramic was prepared by solid-state reaction. This material was characterized by x-ray diffraction and Fourier transform Raman spectroscopy. The temperature dependent dielectric properties were investigated in the frequency range from 1 kHz to 1 MHz. The dielectric measurements indicated a diffuse phase transition. The broadening of the dielectric permittivity in the frequency range as well as its shifting at higher temperatures indicated a relaxor-like behaviour for this material. The diffusivity and the relaxation strength were estimated using the modified Curie-Weiss law. The optical properties were analysed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements at room temperature. The UV-vis spectrum indicated that the Ba(Zr(0.25)Ti(0.75))O(3) ceramic has an optical band gap of 2.98 eV. A blue PL emission was observed for this compound when excited with 350 nm wavelength. The polarity as well as the PL property of this material was attributed to the presence of polar [TiO(6)] distorted clusters into a globally cubic matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the first time, nanograined Pb(1-1.5x)La(x)TiO(3) ferroelectric ceramics, with x=0.2, were produced by a process based on a high-pressure densification technique (HPD) that eliminates the need of high-temperature sintering. Our results showed the production of workable dense ceramics with average grain size around 100 nm and free from secondary phase. Regarding the dielectric measurements, the samples showed satisfactory dielectric losses as well as remarkable diffusivity in the dielectric curves. Moreover, ferroelectric hysteresis measurements showed that samples produced by the HPD technique can stand high electric fields necessary to switch the polarization and thus to induce piezoelectric activity. Our results demonstrated clearly the viability of the proposed method to produce nanograined ferroelectric bulk ceramics, then opening the possibility of developing new technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed investigation was made into the origin of photoluminescence in an alternate multilayer system of SrZrO(3) (SZO) and SrTiO(3) (STO) thin films. XRD and room-temperature PL studies revealed a high consistency with respect to improved crystallization at elevated temperatures. The photoluminescence behaviour of SZO/STO multilayered system consists in the superposition of independent photoluminescence emissions of both STO and SZO films. Based on the present results and on previous experimental and theoretical data, we propose that the origin of the photoluminescence emission results from structural disorder generated by the presence of distortions in the ideal constituent clusters of these materials. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PbMoO(4) micro-octahedrons were prepared by the coprecipitation method at room temperature without the presence of surfactants and processed in a conventional hydrothermal at different temperatures (from 60 to 120 degrees C) for 10 min. These micro-octahedrons were structurally characterized by X-ray diffraction (XRD) and micro-Raman (MR) spectroscopy, and its morphology was investigated by field-emission gun scanning electron microscopy (FEG-SEM). The optical properties were analyzed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns and MR spectra confirmed that the PbMoO(4) micro-octahedrons are characterized by a scheelite-type tetragonal structure. FEG-SEM micrographs points, out that these structures present a polydisperse particle size distribution in consequence of a predominant growth mechanism via aggregation of particles. In addition, it was observed that the hydrothermal conditions favored a spontaneous formation of micro-octahedrons interconnected along a common crystallographic orientation (oriented-attachment), resulting in self-organized structures. An intense blue PL emission at room temperature was observed in these micro-octahedrons when they were excited with a 350 nm wavelength. The origin of the PL emissions as well as its intensity variations are explained by means of a model based on both distorted [MoO(4)] and [PbO(8)] clusters into the lattice.