906 resultados para Revolutionary Armed Forces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High molecular weight hyaluronic acid (HA) is present in articular joints and synovial fluid at high concentrations; yet despite numerous studies, the role of HA in joint lubrication is still not clear. Free HA in solution does not appear to be a good lubricant, being negatively charged and therefore repelled from most biological, including cartilage, surfaces. Recent enzymatic experiments suggested that mechanically or physically (rather than chemically) trapped HA could function as an “adaptive” or “emergency” boundary lubricant to eliminate wear damage in shearing cartilage surfaces. In this work, HA was chemically grafted to a layer of self-assembled amino-propyl-triethoxy-silane (APTES) on mica and then cross-linked. The boundary lubrication behavior of APTES and of chemically grafted and cross-linked HA in both electrolyte and lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) solutions was tested with a surface forces apparatus (SFA). Despite the high coefficient of friction (COF) of μ ≈ 0.50, the chemically grafted HA gel significantly improved the lubrication behavior of HA, particularly the wear resistance, in comparison to free HA. Adding more DOPC lipid to the solution did not improve the lubrication of the chemically grafted and cross-linked HA layer. Damage of the underlying mica surface became visible at higher loads (pressure >2 MPa) after prolonged sliding times. It has generally been assumed that damage caused by or during sliding, also known as “abrasive friction”, which is the main biomedical/clinical/morphological manifestation of arthritis, is due to a high friction force and, therefore, a large COF, and that to prevent surface damage or wear (abrasion) one should therefore aim to reduce the COF, which has been the traditional focus of basic research in biolubrication, particularly in cartilage and joint lubrication. Here we combine our results with previous ones on grafted and cross-linked HA on lipid bilayers, and lubricin-mediated lubrication, and conclude that for cartilage surfaces, a high COF can be associated with good wear protection, while a low COF can have poor wear resistance. Both of these properties depend on how the lubricating molecules are attached to and organized at the surfaces, as well as the structure and mechanical, viscoelastic, elastic, and physical properties of the surfaces, but the two phenomena are not directly or simply related. We also conclude that to provide both the low COF and good wear protection of joints under physiological conditions, some or all of the four major components of joints—HA, lubricin, lipids, and the cartilage fibrils—must act synergistically in ways (physisorbed, chemisorbed, grafted and/or cross-linked) that are still to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first surface force measurements under electrochemical potential control between a metal and a ceramic surface across a liquid medium (water) are reported. Our experiments also investigate and reveal how increasing levels of surface roughness and dissimilarity between the potentials of the interacting surfaces influence the strength and range of electric double layer, van der Waals, hydration, and steric forces and how this contributes to deviations from DLVO theory at small distances within aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper/poly(vinyl alcohol) (PVA) nanocables have been successfully obtained by electrospinning a PVA-protected copper nanoparticle solution. The molar ratio of copper ions to PVA (in terms of VA repeating units) plays an important role in the formation of copper/PVA nanocables. The average diameter of the copper cores and PVA shells is about 100 and 400 nm, respectively. The structures of the copper/PVA nanocables are characterized by transmission electron microscopy (TEM) and their formation is confirmed by scanning electron microscopy (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A family of conformationally preorganized, [n]polynorbornane-based anion hosts 1a,b–6a,b have been synthesized. The series includes receptors with 4, 8, and 12 H-bond donors. Using 1H NMR titration techniques, evaluation of the new hosts against a series of alkyl and aryl dicarboxylates as well as a range of phosphoanionic species has revealed that the tris(thioureido) hosts (in particular 3a) are capable of regioselectively binding dicarboxylates and pyrophosphate (H2PPi2–).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These teaching notes were generated from an Australian Research Council (ARC)
research project titled ‘The Role of Representation in Learning Science’ in which
the topic of Forces was taught to Year 7 students through the adoption of a representation construction approach. A description of several of the activities that were undertaken is given as well as examples of students’ work. Insights into the representation construction apporach that was adopted by the teachers are also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with Å resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force–distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with Å-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal–ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg–Healy–Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force–distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)3 phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.