959 resultados para Renin-Angiotensin System
Resumo:
New materials technology has provided the potential for the development of an innovative Hybrid Composite Floor Plate System (HCFPS) with many desirable properties, such as light weight, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions. HCFPS is configured such that the positive inherent properties of individual component materials are combined to offset any weakness and achieve optimum performance. Research has been carried out using extensive Finite Element (FE) computer simulations supported by experimental testing. Both the strength and serviceability requirements have been established for this lightweight floor plate system. This paper presents some of the research towards the development of HCFPS along with a parametric study to select suitable span lengths.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Evaluating the validity of formative variables has presented ongoing challenges for researchers. In this paper we use global criterion measures to compare and critically evaluate two alternative formative measures of System Quality. One model is based on the ISO-9126 software quality standard, and the other is based on a leading information systems research model. We find that despite both models having a strong provenance, many of the items appear to be non-significant in our study. We examine the implications of this by evaluating the quality of the criterion variables we used, and the performance of PLS when evaluating formative models with a large number of items. We find that our respondents had difficulty distinguishing between global criterion variables measuring different aspects of overall System Quality. Also, because formative indicators “compete with one another” in PLS, it may be difficult to develop a set of measures which are all significant for a complex formative construct with a broad scope and a large number of items. Overall, we suggest that there is cautious evidence that both sets of measures are valid and largely equivalent, although questions still remain about the measures, the use of criterion variables, and the use of PLS for this type of model evaluation.
Resumo:
Readily accepted knowledge regarding crash causation is consistently omitted from efforts to model and subsequently understand motor vehicle crash occurrence and their contributing factors. For instance, distracted and impaired driving accounts for a significant proportion of crash occurrence, yet is rarely modeled explicitly. In addition, spatially allocated influences such as local law enforcement efforts, proximity to bars and schools, and roadside chronic distractions (advertising, pedestrians, etc.) play a role in contributing to crash occurrence and yet are routinely absent from crash models. By and large, these well-established omitted effects are simply assumed to contribute to model error, with predominant focus on modeling the engineering and operational effects of transportation facilities (e.g. AADT, number of lanes, speed limits, width of lanes, etc.) The typical analytical approach—with a variety of statistical enhancements—has been to model crashes that occur at system locations as negative binomial (NB) distributed events that arise from a singular, underlying crash generating process. These models and their statistical kin dominate the literature; however, it is argued in this paper that these models fail to capture the underlying complexity of motor vehicle crash causes, and thus thwart deeper insights regarding crash causation and prevention. This paper first describes hypothetical scenarios that collectively illustrate why current models mislead highway safety researchers and engineers. It is argued that current model shortcomings are significant, and will lead to poor decision-making. Exploiting our current state of knowledge of crash causation, crash counts are postulated to arise from three processes: observed network features, unobserved spatial effects, and ‘apparent’ random influences that reflect largely behavioral influences of drivers. It is argued; furthermore, that these three processes in theory can be modeled separately to gain deeper insight into crash causes, and that the model represents a more realistic depiction of reality than the state of practice NB regression. An admittedly imperfect empirical model that mixes three independent crash occurrence processes is shown to outperform the classical NB model. The questioning of current modeling assumptions and implications of the latent mixture model to current practice are the most important contributions of this paper, with an initial but rather vulnerable attempt to model the latent mixtures as a secondary contribution.
Resumo:
The IEEE Subcommittee on the Application of Probability Methods (APM) published the IEEE Reliability Test System (RTS) [1] in 1979. This system provides a consistent and generally acceptable set of data that can be used both in generation capacity and in composite system reliability evaluation [2,3]. The test system provides a basis for the comparison of results obtained by different people using different methods. Prior to its publication, there was no general agreement on either the system or the data that should be used to demonstrate or test various techniques developed to conduct reliability studies. Development of reliability assessment techniques and programs are very dependent on the intent behind the development as the experience of one power utility with their system may be quite different from that of another utility. The development and the utilization of a reliability program are, therefore, greatly influenced by the experience of a utlity and the intent of the system manager, planner and designer conducting the reliability studies. The IEEE-RTS has proved to be extremely valuable in highlighting and comparing the capabilities (or incapabilities) of programs used in reliability studies, the differences in the perception of various power utilities and the differences in the solution techniques. The IEEE-RTS contains a reasonably large power network which can be difficult to use for initial studies in an educational environment.
Resumo:
The IEEE Reliability Test System (RTS) developed by the Application of Probability Method Subcommittee has been used to compare and test a wide range of generating capacity and composite system evaluation techniques and subsequent digital computer programs. A basic reliability test system is presented which has evolved from the reliability education and research programs conducted by the Power System Research Group at the University of Saskatchewan. The basic system data necessary for adequacy evaluation at the generation and composite generation and transmission system levels are presented together with the fundamental data required to conduct reliability-cost/reliability-worth evaluation
Resumo:
A set of basic reliability indices at the generation and composite generation and transmission levels for a small reliability test system are presented. The test system and the results presented have evolved from reliability research and teaching programs. The indices presented are for fundamental reliability applications which should be covered in a power system reliability teaching program. The RBTS test system and the basic indices provide a valuable reference for faculty and students engaged in reliability teaching and research
Resumo:
The reliable operation of the electrical system at Callide Power Station is of extreme importance to the normal everyday running of the Station. This study applied the principles of reliability to do an analysis on the electrical system at Callide Power Station. It was found that the level of expected outage cost increased exponentially with a declining level of maintenance. Concluding that even in a harsh economic electricity market where CS Energy tries and push their plants to the limit, maintenance must not be neglected. A number of system configurations were found to increase the reliability of the system and reduce the expected outage costs. A number of other advantages were identified as a result of using reliability principles to do this study on the Callide electrical system configuration.
Resumo:
Waste management and minimisation is considered to be an important issue for achieving sustainability in the construction industry. Retrofit projects generate less waste than demolitions and new builds, but they possess unique features and require waste management approaches that are different to traditional new builds. With the increasing demand for more energy efficient and environmentally sustainable office spaces, the office building retrofit market is growing in capital cities around Australia with a high level of refurbishment needed for existing aging properties. Restricted site space and uncertain delivery process in these projects make it a major challenge to manage waste effectively. The labour-intensive nature of retrofit projects creates the need for the involvement of small and medium enterprises (SMEs) as subcontractors in on-site works. SMEs are familiar with on-site waste generation but are not as actively motivated and engaged in waste management activities as the stakeholders in other construction projects in the industry. SMEs’ responsibilities for waste management in office building retrofit projects need to be identified and adapted to the work delivery processes and the waste management system supported by project stakeholders. The existing literature provides an understanding of how to manage construction waste that is already generated and how to increase the waste recovery rate for office building retrofit projects. However, previous research has not developed theories or practical solutions that can guide project stakeholders to understand the specific waste generation process and effectively plan for and manage waste in ongoing project works. No appropriate method has been established for the potential role and capability of SMEs to manage and minimise waste from their subcontracting works. This research probes into the characteristics of office building retrofit project delivery with the aim to develop specific tools to manage waste and incorporate SMEs in this process in an appropriate and effective way. Based on an extensive literature review, the research firstly developed a questionnaire survey to identify the critical factors of on-site waste generation in office building retrofit projects. Semi-structured interviews were then utilised to validate the critical waste factors and establish the interrelationships between the factors. The interviews served another important function of identifying the current problems of waste management in the industry and the performance of SMEs in this area. Interviewees’ opinions on remedies to the problems were also collected. On the foundation of the findings from the questionnaire survey and semi-structured interviews, two waste planning and management strategies were identified for the dismantling phase and fit-out phase of office building retrofit projects, respectively. Two models were then established to organize SMEs’ waste management activities, including a work process-based integrated waste planning model for the dismantling phase and a system dynamics model for the fit-out phase. In order to apply the models in real practice, procedures were developed to guide SMEs’ work flow in on-site waste planning and management. In addition, a collaboration framework was established for SMEs and other project stakeholders for effective waste planning and management. Furthermore, an organisational engagement strategy was developed to improve SME waste management practices. Three case studies were conducted to validate and finalise the research deliverables. This research extends the current literature that mostly covers waste management plans in new build projects, by presenting the knowledge and understanding of addressing waste problems in retrofit projects. It provides practical tools and guidance for industry practitioners to effectively manage the waste generation processes in office building retrofit projects. It can also promote industry-level recognition of the role of SMEs and their performance in on-site waste management.
Resumo:
Power system restoration after a large area outage involves many factors, and the procedure is usually very complicated. A decision-making support system could then be developed so as to find the optimal black-start strategy. In order to evaluate candidate black-start strategies, some indices, usually both qualitative and quantitative, are employed. However, it may not be possible to directly synthesize these indices, and different extents of interactions may exist among these indices. In the existing black-start decision-making methods, qualitative and quantitative indices cannot be well synthesized, and the interactions among different indices are not taken into account. The vague set, an extended version of the well-developed fuzzy set, could be employed to deal with decision-making problems with interacting attributes. Given this background, the vague set is first employed in this work to represent the indices for facilitating the comparisons among them. Then, a concept of the vague-valued fuzzy measure is presented, and on that basis a mathematical model for black-start decision-making developed. Compared with the existing methods, the proposed method could deal with the interactions among indices and more reasonably represent the fuzzy information. Finally, an actual power system is served for demonstrating the basic features of the developed model and method.
Resumo:
Shadow nations face particular problems in constructing competitive film industries. Shadow nations refer to nations whose relative competitiveness suffers from easy product substitutability by products initiated, produced and distributed by powerful actors, such as media conglomerates located in Hollywood. The dominant literature has so far neglected the developing policy recommendations for dealing explicitly with the challenges of shadow nations. This paper aims to develop and apply a normative model for the development of film industries in shadow nations. The model integrates insights from innovation system studies and place branding. The developed model is applied to the Australian film industry as Australia represents a typical shadow nation within the film industry.
Resumo:
Recently the use of the carbon fibre reinforced polymer(CFRP) composites appears to be an excellent solution for retrofitting and strengthening of concrete and steel structures because of its superior physical and mechanical properties through the integration of other materials. However, the overall functionality and durability under various environmental conditions of the system has not yet been well documented. This paper reviews the environmental durability of CFRP strengthened system that has received only small coverage in previous review articles. Future research topics have also been indentified, such as durability of steel circular hollow section under various environmental conditions subjected to bending. Environment of interests are moisture/solution, alkalinity, creep/relaxation, fatigue, fire, thermal effects (including freeze-thaw), and ultraviolet exposure.
Resumo:
Whole-body computer control interfaces present new opportunities to engage children with games for learning. Stomp is a suite of educational games that use such a technology, allowing young children to use their whole body to interact with a digital environment projected on the floor. To maximise the effectiveness of this technology, tenets of self-determination theory (SDT) are applied to the design of Stomp experiences. By meeting user needs for competence, autonomy, and relatedness our aim is to increase children's engagement with the Stomp learning platform. Analysis of Stomp's design suggests that these tenets are met. Observations from a case study of Stomp being used by young children show that they were highly engaged and motivated by Stomp. This analysis demonstrates that continued application of SDT to Stomp will further enhance user engagement. It also is suggested that SDT, when applied more widely to other whole-body multi-user interfaces, could instil similar positive effects.