984 resultados para Relaxation oscillators
Resumo:
We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.
Resumo:
It is found that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. A strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing indirect evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between the Fabry-Perot superconducting mirrors.
Resumo:
In this paper we study the effect of microwave absorption on the quantum relaxation rate of Mn12 molecular clusters. We have determined first the resonant frequencies of a microwave resonator containing a single crystal of Mn12-Acetate and measured initial isothermal magnetization curves while microwave power was put into the resonator. We have found that the tunneling rate changes one order of magnitude for certain frequencies. This suggests that the microwave shaking of the nuclear spin and molecular vibrational degrees of freedom is responsible for the huge increasing of the tunneling rate.
Resumo:
The question addressed in this paper is that of the influence of the density of dislocations on the spin tunneling in Mn12 clusters. We have determined the variation in the mosaicity of fresh and thermally treated single crystals of Mn12 by analyzing the widening of low angle x-ray diffraction peaks. It has also been well established from both isothermal magnetization and relaxation experiments that there is a broad distribution of tunneling rates which is shifted to higher rates when the density of dislocations increases.
Resumo:
We report experimental studies of crystals of Mn12 molecular magnetic clusters in pulsed magnetic fields with sweep rates up to 410^3 T/s . The steps in the magnetization curve are observed at fields that are shifted with respect to the resonant field values. The shift systematically increases as the rate of the field sweep goes up. These data are consistent with the theory of the collective dipolar relaxation in molecular magnets.
Resumo:
"static" instanton, representing pair creation of critical bubbles¿a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the ¿saltatory¿ relaxation scenario proposed by Feng et al.
Resumo:
We have studied the collective behavior of a population of integrate-and-fire oscillators. We show that diversity, introduced in terms of a random distribution of natural periods, is the mechanism that permits one to observe self-organized criticality (SOC) in the long time regime. As diversity increases the system undergoes several transitions from a supercritical regime to a subcritical one, crossing the SOC region. Although there are resemblances with percolation, we give proofs that criticality takes place for a wide range of values of the control parameter instead of a single value.
Resumo:
Populations of phase oscillators interacting globally through a general coupling function f(x) have been considered. We analyze the conditions required to ensure the existence of a Lyapunov functional giving close expressions for it in terms of a generating function. We have also proposed a family of exactly solvable models with singular couplings showing that it is possible to map the synchronization phenomenon into other physical problems. In particular, the stationary solutions of the least singular coupling considered, f(x) = sgn(x), have been found analytically in terms of elliptic functions. This last case is one of the few nontrivial models for synchronization dynamics which can be analytically solved.
Resumo:
We propose a microscopic model without energy barriers in order to explain some generic features observed in structural glasses. The statics can be exactly solved while the dynamics has been clarified using Monte Carlo calculations. Although the model has no thermodynamic transition, it captures some of the essential features of real glasses, i.e., extremely slow relaxation, time dependent hysteresis effects, anomalous increase of the relaxation time, and aging. This suggests that the effect of entropy barriers can be an important ingredient to account for the behavior observed in real glasses.
Resumo:
We simulate the glide motion of an assembly of interacting dislocations under the action of an external shear stress and show that the associated plastic creep relaxation follows Andrades law. Our results indicate that Andrade creep in plastically deforming crystals involves the correlated motion of dislocation structures near a dynamic transition separating a flowing from a jammed phase. Simulations in the presence of dislocation multiplication and noise confirm the robustness of this finding and highlight the importance of metastable structure formation for the relaxation process.
Resumo:
Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included.
Resumo:
We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.
Resumo:
Recent experiments on liquid water show collective dipole orientation fluctuations dramatically slower than expected (with relaxation time >tation, the self-dipole randomization time tr, which is an upper limit on ta; we find that tr5ta. Third, to check if there are correlated domains of dipoles in water which have large relaxation times compared to the individual dipoles, we calculate the randomization time tbox of the site-dipole field, the net dipole moment formed by a set of molecules belonging to a box of edge Lbox. We find that the site-dipole randomization time tbox2.5ta for Lbox3 , i.e., it is shorter than the same quantity calculated for the self-dipole. Finally, we find that the orientational correlation length is short even at low T.
Resumo:
In this paper we consider an exactly solvable model that displays glassy behavior at zero temperature due to entropic barriers. The new ingredient of the model is the existence of different energy scales or modes associated with different relaxational time scales. Low-temperature relaxation takes place by partial equilibration of successive lower-energy modes. An adiabatic scaling solution, defined in terms of a threshold energy scale e*, is proposed. For such a solution, modes with energy ee* are equilibrated at the bath temperature, modes with ee* remain out of equilibrium, and relaxation occurs in the neighborhood of the threshold e~e*. The model is presented as a toy example to investigate the conditions related to the existence of an effective temperature in glassy systems and its possible dependence on the energy sector is probed by the corresponding observable.
Resumo:
To understand the origin of the dynamical transition, between high-temperature exponential relaxation and low-temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower being a standard spin glass transition (in the presence of disorder) or fully frustrated Ising (in the absence of disorder), and the higher being a Potts transition. Monte Carlo results clarify that in the model with (or without) disorder the precursor phenomena are related to the Griffiths (or Potts) transition. The Griffiths transition is a vanishing transition which occurs above the Potts transition and is present only when disorder is present, while the Potts transition which signals the effect due to frustration is always present. These results suggest that precursor phenomena in frustrated systems are due either to disorder and/or to frustration, giving a consistent interpretation also for the limiting cases of Ising spin glass and of Ising fully frustrated model, where also the Potts transition is vanishing. This interpretation could play a relevant role in glassy systems beyond the spin systems case.