973 resultados para Reference measurements
Resumo:
We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.
Resumo:
This paper presents a laboratory study of the discharge radio noise generated by ceramic insulator strings under normal conditions. In the course of study, a comparison on the performance of two types of insulator strings under two different conditions was studied namely (a) normal disc insulators in a string and (b) disc insulators integrated with a newly developed field reduction electrode fixed to the disc insulator at the pin junction. The results obtained during the study are discussed and presented.
Resumo:
In meteorology, observations and forecasts of a wide range of phenomena for example, snow, clouds, hail, fog, and tornados can be categorical, that is, they can only have discrete values (e.g., "snow" and "no snow"). Concentrating on satellite-based snow and cloud analyses, this thesis explores methods that have been developed for evaluation of categorical products and analyses. Different algorithms for satellite products generate different results; sometimes the differences are subtle, sometimes all too visible. In addition to differences between algorithms, the satellite products are influenced by physical processes and conditions, such as diurnal and seasonal variation in solar radiation, topography, and land use. The analysis of satellite-based snow cover analyses from NOAA, NASA, and EUMETSAT, and snow analyses for numerical weather prediction models from FMI and ECMWF was complicated by the fact that we did not have the true knowledge of snow extent, and we were forced simply to measure the agreement between different products. The Sammon mapping, a multidimensional scaling method, was then used to visualize the differences between different products. The trustworthiness of the results for cloud analyses [EUMETSAT Meteorological Products Extraction Facility cloud mask (MPEF), together with the Nowcasting Satellite Application Facility (SAFNWC) cloud masks provided by Météo-France (SAFNWC/MSG) and the Swedish Meteorological and Hydrological Institute (SAFNWC/PPS)] compared with ceilometers of the Helsinki Testbed was estimated by constructing confidence intervals (CIs). Bootstrapping, a statistical resampling method, was used to construct CIs, especially in the presence of spatial and temporal correlation. The reference data for validation are constantly in short supply. In general, the needs of a particular project drive the requirements for evaluation, for example, for the accuracy and the timeliness of the particular data and methods. In this vein, we discuss tentatively how data provided by general public, e.g., photos shared on the Internet photo-sharing service Flickr, can be used as a new source for validation. Results show that they are of reasonable quality and their use for case studies can be warmly recommended. Last, the use of cluster analysis on meteorological in-situ measurements was explored. The Autoclass algorithm was used to construct compact representations of synoptic conditions of fog at Finnish airports.
Resumo:
The question what a business-to-business (B2B) collaboration setup and enactment application-system should look like remains open. An important element of such collaboration constitutes the inter-organizational disclosure of business-process details so that the opposing parties may protect their business secrets. For that purpose, eSourcing [37] has been developed as a general businessprocess collaboration concept in the framework of the EU research project Cross- Work. The eSourcing characteristics are guiding for the design and evaluation of an eSourcing Reference Architecture (eSRA) that serves as a starting point for software developers of B2B-collaboration systems. In this paper we present the results of a scenario-based evaluation method conducted with the earlier specified eSourcing Architecture (eSA) that generates as results risks, sensitivity, and tradeoff points that must be paid attention to if eSA is implemented. Additionally, the evaluation method detects shortcomings of eSA in terms of integrated components that are required for electronic B2B-collaboration. The evaluation results are used for the specification of eSRA, which comprises all extensions for incorporating the results of the scenario-based evaluation, on three refinement levels.
Resumo:
The chemical potentials of SrO in two-phase fields (TiO2 + SrTiO3) (SrTiO3 + Sr4Ti3O10) (Sr4Ti3O10 + Sr3Ti2O7) and (Sr3Ti2O7 + Sr2TiO4) of the pseudo-binary system (SrO + TiO2) have been measured in the temperature range (900 to 1250) K relative to pure SrO as the reference state using solid-state galvanic cells incorporating single crystal SrF2 as the electrolyte The cells were operated under pure oxygen at ambient pressure The standard Gibbs free energies of formation of strontium titanates SrTiO3 Sr4Ti3O10 Sr3Ti2O7 and Sr2TiO4 from their component binary oxides were derived from the reversible electromotive force (EMF) of the cells For the formation of the four compounds from their component oxides TiO2 with rutile structure and SrO the standard Gibbs free energy changes are given by Delta G((ox))(SrTiO3) +/- 89/(J mol(-1)) = -121878 + 3 881(T/K) Delta G((ox))(Sr4Ti3O10) +/- 284/(J mol(-1)) = -409197 + 14 749(T/K) Delta G((ox))(Sr3Ti2O7) +/- 190/(J mol(-1)) = -285827 + 10 022(T/K) Delta G((ox))(Sr2TiO4) +/- 110/(J mol(-1))= -159385 + 3 770(T/K) The reference state for solid TiO2 is the rutile form The results of this study are in good agreement with Gibbs free energy of formation data reported in the literature for SrTiO3 but differ significantly with data for Sr4Ti3O10 For Si3Ti2O7 and Si2TiO4 experimental measurements are not available in the literature for direct comparison with the results obtained in this study (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Eddy covariance (EC)-flux measurement technique is based on measurement of turbulent motions of air with accurate and fast measurement devices. For instance, in order to measure methane flux a fast methane gas analyser is needed which measures methane concentration at least ten times in a second in addition to a sonic anemometer, which measures the three wind components with the same sampling interval. Previously measurement of methane flux was almost impossible to carry out with EC-technique due to lack of fast enough gas analysers. However during the last decade new instruments have been developed and thus methane EC-flux measurements have become more common. Performance of four methane gas analysers suitable for eddy covariance measurements are assessed in this thesis. The assessment and comparison was performed by analysing EC-data obtained during summer 2010 (1.4.-26.10.) at Siikaneva fen. The four participating methane gas analysers are TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and Prototype-7700 (LI-COR Biosciences, USA). RMT-200 functioned most reliably throughout the measurement campaign and the corresponding methane flux data had the smallest random error. In addition, methane fluxes calculated from data obtained from G1301-f and RMT-200 agree remarkably well throughout the measurement campaign. The calculated cospectra and power spectra agree well with corresponding temperature spectra. Prototype-7700 functioned only slightly over one month in the beginning of the measurement campaign and thus its accuracy and long-term performance is difficult to assess.
Resumo:
Supercritical carbon dioxide is used to prepare aerogels of two reference molecular organogelators, 2,3-bis-n-decyloxyanthracene (DDOA) (luminescent molecule) and 12-hydroxystearic acid (HSA). Electron microscopy reveals the fibrillar morphology of the aggregates generated by the protocol. SAXS and SANS measurements show that DDOA aerogels are crystalline materials exhibiting three morphs: (1) arrangements of the crystalline solid (2D p6m), (2) a second hexagonal morph slightly more compact, and (3) a packing specific of the fibers in the gel. Aggregates specific of the aerogel (volume fraction being typically phi approximate to 0.60) are developed over larger distances (similar to 1000 angstrom) and bear fewer defaults and residual strains than aggregates in the crystalline and gel phases. Porod, Scherrer and Debye-Bueche analyses of the scattering data have been performed. The first five diffraction peaks show small variations in position and intensity assigned to the variation of the number of fibers and their degree of vicinity within hexagonal bundles of the related SAFIN according to the Oster model. Conclusions are supported by the guidelines offered by the analysis of the situation in HSA aerogels for which the diffraction pattern can be described by two coexisting lamellar-like arrangements. The porosity of the aerogel, as measured by its specific surface extracted from the scattering invariant analysis, is only 1.8 times less than that of the swollen gel and is characteristic of a very porous material.
Resumo:
A common point of reference is needed to describe the three-dimensional arrangements of bases and base-pairs in nucleic acid structures. The different standards used in computer programs created for this purpose give rise to con¯icting interpretations of the same structure.1 For example, parts of a structure that appear ``normal'' according to one computational scheme may be highly unusual according to another and vice versa. It is thus dif®cult to carry out comprehensive comparisons of nucleic acid structures and to pinpoint unique conformational features in individual structures
Resumo:
The basic principles of operation of gas sensors based on solid-state galvanic cells are described. The polarisation of the electrodes can be minimised by the use of point electrodes made of the solid electrolyte, the use of a reference system with chemical potential close to that of the sample system and the use of graded condensed phase reference electrodes. Factors affecting the speed of response of galvanic sensors in equilibrium and non-equilibrium gas mixtures are considered with reference to products of combustion of fossil fuels. An expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for non-isothermal galvanic sensors are briefly outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. Sensors for oxygen, carbon, and alloying elements (Zn and Si) in liquid metals and alloys are discussed. The use of auxiliary electrodes permits the detection of chemical species in the gas phase which are not mobile in the solid electrolyte. Finally, the cause of common errors in galvanic measurements, and tests for correct functioning of galvanic sensors are given. 60 ref.--AA
Resumo:
The specific heat Cp of glassy Ge20Se80−xBix (0 ≤ × ≤ 12) samples is investigated. The Cp at 323K and the ΔCp at glass transition temperature Tg1 show anomalous features around x = 8 at.%, where p−n conduction type inversion also take place. These features are discussed in the light of Phillips model of phase separation in these glasses at the microscopic level.
Resumo:
This study explores the utility of polarimetric measurements for discriminating between hydrometeor types with the emphasis on (a) hail detection and discrimination of its size, (b) measurement of heavy precipitation, (c) identification and quantification of mixed-phase hydrometeors, and (d) discrimination of ice forms. In particular, we examine the specific differential phase, the backscatter differential phase, the correlation coefficient between vertically and horizontally polarized waves, and the differential reflectivity, collected from a storm at close range. Three range–height cross sections are analyzed together with complementary data from a prototype WSR-88D radar. The case is interesting because it demonstrates the complementary nature of these polarimetric measurands. Self-consistency among them allows qualitative and some quantitative discrimination between hydrometeors.
Resumo:
The urban heat island phenomenon is the most well-known all-year-round urban climate phenomenon. It occurs in summer during the daytime due to the short-wave radiation from the sun and in wintertime, through anthropogenic heat production. In summertime, the properties of the fabric of city buildings determine how much energy is stored, conducted and transmitted through the material. During night-time, when there is no incoming short-wave radiation, all fabrics of the city release the energy in form of heat back to the urban atmosphere. In wintertime anthropogenic heating of buildings and traffic deliver energy into the urban atmosphere. The initial focus of Helsinki urban heat island was on the description of the intensity of the urban heat island (Fogelberg 1973, Alestalo 1975). In this project our goal was to carry out as many measurements as possible over a large area of Helsinki to give a long term estimate of the Helsinki urban heat island. Helsinki is a city with 550 000 inhabitants and located on the north shore of Finnish Bay of the Baltic Sea. Initially, comparison studies against long-term weather station records showed that our regular, but weekly, sampling of observations adequately describe the Helsinki urban heat island. The project covered an entire seasonal cycle over the 12 months from July 2009 to June 2010. The measurements were conducted using a moving platform following microclimatological traditions. Tuesday was selected as the measuring day because it was the only weekday during the one year time span without any public holidays. Once a week, two set of measurements, in total 104, were conducted in the heterogeneous temperature conditions of Helsinki city centre. In the more homogeneous suburban areas, one set of measurements was taken every second week, to give a total of 52.The first set of measurements took place before noon, and the second 12 hours, just prior to midnight. Helsinki Kaisaniemi weather station was chosen as the reference station. This weather station is located in a large park in the city centre of Helsinki. Along the measurement route, 336 fixed points were established, and the monthly air temperature differences to Kaisaniemi were calculated to produce monthly and annual maps. The monthly air temperature differences were interpolated 21.1 km by 18.1 km horizontal grid with 100 metre resolution residual kriging method. The following independent variables for the kriging interpolation method were used: topographical height, portion of sea area, portion of trees, fraction of built-up and not built-up area, volumes of buildings, and population density. The annual mean air temperature difference gives the best representation of the Helsinki urban heat island effect- Due to natural variability of weather conditions during the measurement campaign care must be taken when interpretation the results for the monthly values. The main results of this urban heat island research project are: a) The city centre of Helsinki is warmer than its surroundings, both on a monthly main basis, and for the annual mean, however, there are only a few grid points, 46 out of 38 191, which display a temperature difference of more than 1K. b) If the monthly spatial variation is air temperature differences is small, then usually the temperature difference between the city and the surroundings is also small. c) Isolated large buildings and suburban centres create their own individual heat island. d) The topographical influence on air temperature can generally be neglected for the monthly mean, but can be strong under certain weather conditions.