994 resultados para Reaction diffusion
Resumo:
Schizophrenia is a complex psychiatric disorder characterized by disabling symptoms and cognitive deficit. Recent neuroimaging findings suggest that large parts of the brain are affected by the disease, and that the capacity of functional integration between brain areas is decreased. In this study we questioned (i) which brain areas underlie the loss of network integration properties observed in the pathology, (ii) what is the topological role of the affected regions within the overall brain network and how this topological status might be altered in patients, and (iii) how white matter properties of tracts connecting affected regions may be disrupted. We acquired diffusion spectrum imaging (a technique sensitive to fiber crossing and slow diffusion compartment) data from 16 schizophrenia patients and 15 healthy controls, and investigated their weighted brain networks. The global connectivity analysis confirmed that patients present disrupted integration and segregation properties. The nodal analysis allowed identifying a distributed set of brain nodes affected in the pathology, including hubs and peripheral areas. To characterize the topological role of this affected core, we investigated the brain network shortest paths layout, and quantified the network damage after targeted attack toward the affected core. The centrality of the affected core was compromised in patients. Moreover the connectivity strength within the affected core, quantified with generalized fractional anisotropy and apparent diffusion coefficient, was altered in patients. Taken together, these findings suggest that the structural alterations and topological decentralization of the affected core might be major mechanisms underlying the schizophrenia dysconnectivity disorder. Hum Brain Mapp, 36:354-366, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
Purpose: The increase of apparent diffusion coefficient (ADC) in treated hepatic malignancies compared to pre-therapeutic values has been interpreted as treatment success; however, the variability of ADC measurements remains unknown. Furthermore, ADC has been usually measured in the whole lesion, while measurements should be probably centered on the area with the most restricted diffusion (MRDA) as it represents potential tumoral residue. Our objective was to compare the inter/intraobserver variability of ADC measurements in the whole lesion and in MRDA. Material and methods: Forty patients previously treated with chemoembolization or radiofrequency were evaluated (20 on 1.5T and 20 on 3.0T). After consensual agreement on the best ADC image, two readers measured the ADC values using separate regions of interest that included the whole lesion and the whole MRDA without exceeding their borders. The same measurements were repeated two weeks later. Spearman test and the Bland-Altman method were used. Results: Interobserver correlation in ADC measurements in the whole lesion and MRDA was as follows: 0.962 and 0.884. Intraobserver correlation was, respectively, 0.992 and 0.979. Interobserver limits of variability (mm2/sec*10-3) were between -0.25/+0.28 in the whole lesion and between -0.51/+0.46 in MRDA. Intraobserver limits of variability were, respectively: -0.25/+0.24 and -0.43/+0.47. Conclusion: We observed a good inter/intraobserver correlation in ADC measurements. Nevertheless, a limited variability does exist, and it should be considered when interpreting ADC values of hepatic malignancies.
Resumo:
The purpose of this paper was to screen thirty-two arracacha genotypes for their reaction to root soft rot. Twenty roots of each genotype were inoculated with two Pectobacterium chrysanthemi isolates in a randomized experiment (10 roots/isolate). After inoculation, roots were individually wrapped with PVC film and kept at 26ºC in closed plastic bags. Soft rot lesions were recorded after 36 hours and genotypes were grouped in four classes of susceptibility by cluster analysis: 10 were less susceptible, 16 intermediate, 3 susceptible and 3 very susceptible. All the tested arracacha genotypes showed only variation in the degree of susceptibility.
Resumo:
This publication presents one of the first uses of silicon oxide nanoparticles to detect fingermarks. The study is not confined to showing successful detection of fingermarks, but is focused on understanding the mechanisms involved in the fingermark detection process. To gain such an understanding, various chemical groups are grafted onto the nanoparticle surface, and parameters such as the pH of the solutions or zeta potential are varied to study their influence on the detection. An electrostatic interaction has been the generally accepted hypothesis of interaction between nanoparticles and fingermarks, but the results of this research challenge that hypothesis, showing that the interaction is chemically driven. Carboxyl groups grafted onto the nanoparticle surfaces react with amine groups of the fingermark secretion. This formation of amide linkage between carboxyl and amine groups has further been favoured by catalyzing the reaction with a compound of diimide type. The research strategy adopted here ought to be applicable to all detection techniques using nanoparticles. For most of them the nature of the interaction remains poorly understood.
Resumo:
Lutetium zoning in garnet within eclogites from the Zermatt-Saas Fee zone, Western Alps, reveal sharp, exponentially decreasing central peaks. They can be used to constrain maximum Lu volume diffusion in garnets. A prograde garnet growth temperature interval of 450-600 A degrees C has been estimated based on pseudosection calculations and garnet-clinopyroxene thermometry. The maximum pre-exponential diffusion coefficient which fits the measured central peak is in the order of D-0= 5.7*10(-6) m(2)/s, taking an estimated activation energy of 270 kJ/mol based on diffusion experiments for other rare earth elements in garnet. This corresponds to a maximum diffusion rate of D (600 A degrees C) = 4.0*10(-22) m(2)/s. The diffusion estimate of Lu can be used to estimate the minimum closure temperature, T-c, for Sm-Nd and Lu-Hf age data that have been obtained in eclogites of the Western Alps, postulating, based on a literature review, that D (Hf) < D (Nd) < D (Sm) a parts per thousand currency sign D (Lu). T-c calculations, using the Dodson equation, yielded minimum closure temperatures of about 630 A degrees C, assuming a rapid initial exhumation rate of 50A degrees/m.y., and an average crystal size of garnets (r = 1 mm). This suggests that Sm/Nd and Lu/Hf isochron age differences in eclogites from the Western Alps, where peak temperatures did rarely exceed 600 A degrees C must be interpreted in terms of prograde metamorphism.
Resumo:
The complex structural organization of the white matter of the brain can be depicted in vivo in great detail with advanced diffusion magnetic resonance (MR) imaging schemes. Diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique-the mapping of apparent diffusion coefficient values-to the more complex, such as diffusion tensor imaging, q-ball imaging, diffusion spectrum imaging, and tractography. The type of structural information obtained differs according to the technique used. To fully understand how diffusion MR imaging works, it is helpful to be familiar with the physical principles of water diffusion in the brain and the conceptual basis of each imaging technique. Knowledge of the technique-specific requirements with regard to hardware and acquisition time, as well as the advantages, limitations, and potential interpretation pitfalls of each technique, is especially useful.
Resumo:
BACKGROUND: Dermatophytes are the main cause of onychomycoses, but various nondermatophyte filamentous fungi are often isolated from abnormal nails. The correct identification of the aetiological agent of nail infections is necessary in order to recommend appropriate treatment. OBJECTIVE: To evaluate a rapid polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on 28S rDNA for fungal identification in nails on a large number of samples in comparison with cultures. METHODS: Infectious fungi were analysed using PCR-RFLP in 410 nail samples in which fungal elements were observed in situ by direct mycological examination (positive samples). The results were compared with those previously obtained by culture of fungi on Sabouraud agar from the same nail samples. RESULTS: PCR-RFLP identification of fungi in nails allowed validation of the results obtained in culture when Trichophyton spp. grew from infected samples. In addition, nondermatophyte filamentous fungi could be identified with certainty as the infectious agents in onychomycosis, and discriminated from dermatophytes as well as from transient contaminants. The specificity of the culture results relative to PCR-RFLP appeared to be 81%, 71%, 52% and 63% when Fusarium spp., Scopulariopsis brevicaulis, Aspergillus spp. and Candida spp., respectively, grew on Sabouraud agar. It was also possible to identify the infectious agent when direct nail mycological examination showed fungal elements, but negative results were obtained from fungal culture. CONCLUSIONS: Improved sensitivity for the detection of fungi in nails was obtained using the PCR-RFLP assay. Rapid and reliable molecular identification of the infectious fungus can be used routinely and presents several important advantages compared with culture in expediting the choice of appropriate antifungal therapy.
Resumo:
A model has been developed for evaluating grain size distributions in primary crystallizations where the grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is considered, and a modification of this is proposed to take into account interference of the diffusion profiles between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain size distribution and transformed volume fraction for transformations driven by nucleation and either interface- or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystallization of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are computed, and their properties are discussed.
Resumo:
The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.
Resumo:
Primary objectives: Awake surgeries of slow-growing tumours invading the brain and guided by direct electrical stimulation induce major brain reorganizations accompanied with slight impairments post-operatively. In most cases, these deficits are so slight after a few days that they are often not detectable on classical neuropsychological evaluations. Consequently, this study investigated whether simple visuo-manual reaction time paradigms would sign some level of functional asymmetries between both hemispheres. Importantly, the visual stimulus was located in the saggital plane in order to limit attentional biases and to focus mainly on the inter-hemispheric asymmetry. Methods and procedures: Three patients (aged 41, 59 and 59 years) after resections in parietal regions and a control group (age¼44, SD¼6.9) were compared during simple uni- and bimanual reaction times (RTs). Main outcomes and results: Longer RTs were observed for the contralesional compared to the ipsilesional hand in the unimanual condition. This asymmetry was reversed for the bimanual condition despite longer RTs. Conclusion and clinical implications: Reaction time paradigms are useful in these patients to monitor more precisely their functional deficits, especially their level of functional asymmetry, and to understand brain (re)organization following slowgrowing lesions.
Resumo:
A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]
Resumo:
The influenza of the winter of 1889-90 was one of the first epidemics to spread all over the world. At the time, several people hypothesized that the railway was one of the main vectors of diffusion of this influenza. This hypothesis was defended in Switzerland especially by Schmid, Chief of the Swiss Office of Health, who collected an impressive body of material about the spread of the epidemic in that country. These data on influenza combined with data about the structure of the railway are used in this paper in order to test the hypothesis of a mixed diffusion process, first between communes interconnected by the railway, and secondly, between those communes and neighbouring communes. An event history analysis model taking into account diffusion effects is proposed and estimated. Results show that the hypothesis is supported if the railway network in Switzerland is not taken as a whole but if a distinction between railway companies is made.
Resumo:
Background and Purpose-Ever since the seminal description of ataxic hemiparesis contralateral to a pontine lesion by Miller-Fisher, the question of why contralesional crossing pontocerebellar fibers do not more frequently produce ipsilesional hemiataxia was raised. The few cases of "quadrataxic hemiparesis" or bilateral leg ataxia remain exceptions.Summary of Case-We report an even more unusual variant, namely "crossed ataxia" of the contralesional arm and the ipsilesional leg subsequent to an anteromedial pontine ischemic stroke.Conclusions-MRI diffusion tensor imaging tractography shows that caudal contralesional crossing pontocerebellar fibers (those for the leg) travel trough the lesion, whereas more rostral fibers (those for the arm) are spared. (Stroke. 2011; 42:e571-e573.)