959 resultados para Raritan Bay
Resumo:
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.
Resumo:
The climate evolution of the South Shetland Islands during the last c. 2000 years is inferred from the multiproxy analyses of a long (928 cm) sediment core retrieved from Maxwell Bay off King George Island. The vertical sediment flux at the core location is controlled by summer melting processes that cause sediment-laden meltwater plumes to form. These leave a characteristic signature in the sediments of NE Maxwell Bay. We use this signature to distinguish summer and winter-dominated periods. During the Medieval Warm Period, sediments are generally finer which indicates summer-type conditions. In contrast, during the Little Ice Age (LIA) sediments are generally coarser and are indicative of winter-dominated conditions. Comparison with Northern and Southern Hemisphere, Antarctic, and global temperature reconstructions reveals that the mean grain-size curve from Maxwell Bay closely resembles the curve of the global temperature reconstruction. We show that the medieval warming occurred earlier in the Southern than in the Northern Hemisphere, which might indicate that the warming was driven by processes occurring in the south. The beginning of the LIA appears to be almost synchronous in both hemispheres. The warming after the LIA closely resembles the Northern Hemisphere record which might indicate this phase of cooling was driven by processes occurring in the north. Although the recent rapid regional warming is clearly visible, the Maxwell Bay record does not show the dominance of summer-type sediments until the 1970s. Continued warming in this area will likely affect the marine ecosystem through meltwater induced turbidity of the surface waters as well as an extension of the vegetation period due to the predicted decrease of sea ice in this area.