943 resultados para Rare decays


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der radiative Zerfall eines Hyperons in ein leichteres Hyperon und ein Photon erlaubt eine Untersuchung der Struktur der elektroschwachen Wechselwirkung von Hadronen. Dazu wird die Zerfallsasymmetrie $alpha$ betrachtet. Sie beschreibt die Verteilung des Tochterhyperons bezüglich der Polarisation $vec{P}$ des Mutterhyperons mit $dN / d cos(Theta) propto 1 + alpha |vec{P}| cos(Theta)$, wobei $Theta$ der Winkel zwischen $vec{P}$ und dem Impuls des Tochterhyperons ist. Von besonderem Interesse ist der radiative Zerfall $Xi^0 to Lambda gamma$, für den alle Rechnungen auf Quarkniveau eine positive Asymmetrie vorhersagen, wohingegen bisher eine negative Asymmetrie von $alpha_{Lambda gamma} = -0,73 +- 0,17$ gemessen wurde. Ziel dieser Arbeit war es, die bisherigen Messungen zu überprüfen und die Asymmetrie mit einer deutlich höheren Präzision zu bestimmen. Ferner wurden die Zerfallsasymmetrie des radiativen Zerfalls $Xi^0 to Sigma^0 gamma$ ermittelt und zum Test der angewandten Analysemethode der gut bekannte Zerfall $Xi^0 to Lambda pi^0$ herangezogen. Während der Datennahme im Jahr 2002 zeichnete das NA48/1-Experiment am CERN gezielt seltene $K_S$- und Hyperonzerfälle auf. Damit konnte der weltweit größte Datensatz an $Xi^0$-Zerfällen gewonnen werden, aus dem etwa 52.000 $Xi^0 to Lambda gamma$-Zerfälle, 15.000 $Xi^0 to Sigma^0 gamma$-Zerfälle und 4 Mill. $Xi^0 to Lambda pi^0$-Zerfälle mit nur geringem Untergrund extrahiert wurden. Ebenso wurden die entsprechenden $antiXi$-Zerfälle mit etwa einem Zehntel der obigen Ereigniszahlen registriert. Die Bestimmung der Zerfallsasymmetrien erfolgte durch den Vergleich der gemessene Daten mit einer detaillierten Detektorsimulation und führte zu den folgenden Resultaten dieser Arbeit: $alpha_{Lambda gamma} = -0,701 +- 0,019_{stat} +- 0,064_{sys}$, $alpha_{Sigma^0 gamma} = -0,683 +- 0,032_{stat} +- 0,077_{sys}$, $alpha_{Lambda pi^0} = -0,439 +- 0,002_{stat} +- 0,056_{sys}$, $alpha_{antiLambda gamma} = 0,772 +- 0,064_{stat} +- 0,066_{sys}$, $alpha_{antiSigma^0 gamma} = 0,811 +- 0,103_{stat} +- 0,135_{sys}$, $alpha_{antiLambda pi^0} = 0,451 +- 0,005_{stat} +- 0,057_{sys}$. Somit konnte die Unsicherheit der $Xi^0 to Lambda gamma$-Zerfallsasymmetrie auf etwa ein Drittel reduziert werden. Ihr negatives Vorzeichen und damit der Widerspruch zu den Vorhersagen der Quarkmodellrechnungen ist so zweifelsfrei bestätigt. Mit den zum ersten Mal gemessenen $antiXi$-Asymmetrien konnten zusätzlich Grenzen auf eine mögliche CP-Verletzung in den $Xi^0$-Zerfällen, die $alpha_{Xi^0} neq -alpha_{antiXi}$ zur Folge hätte, bestimmt werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis was an experimental test of an effective theory of strong interactions at low energy, called Chiral Perturbation Theory (ChPT). Weak decays of kaon mesons provide such a test. In particular, K± → π±γγ decays are interesting because there is no tree-level O(p2) contribution in ChPT, and the leading contributions start at O(p4). At this order, these decays include one undetermined coupling constant, ĉ. Both the branching ratio and the spectrum shape of K± → π±γγ decays are sensitive to this parameter. O(p6) contributions to K± → π±γγ ChPT predict a 30-40% increase in the branching ratio. From the measurement of the branching ratio and spectrum shape of K± → π±γγ decays, it is possible to determine a model dependent value of ĉ and also to examine whether the O(p6) corrections are necessary and enough to explain the rate.About 40% of the data collected in the year 2003 by the NA48/2 experiment have been analyzed and 908 K± → π±γγ candidates with about 8% background contamination have been selected in the region with z = mγγ2/mK2 ≥ 0.2. Using 5,750,121 selected K± → π±π0 decays as normalization channel, a model independent differential branching ratio of K± → π±γγ has been measured to be:BR(K± → π±γγ, z ≥ 0.2) = (1.018 ± 0.038stat ± 0.039syst ± 0.004ext) ∙10-6. From the fit to the O(p6) ChPT prediction of the measured branching ratio and the shape of the z-spectrum, a value of ĉ = 1.54 ± 0.15stat ± 0.18syst has been extracted. Using the measured ĉ value and the O(p6) ChPT prediction, the branching ratio for z =mγγ2/mK2 <0.2 was computed and added to the measured result. The value obtained for the total branching ratio is:BR(K± → π±γγ) = (1.055 ± 0.038stat ± 0.039syst ± 0.004ext + 0.003ĉ -0.002ĉ) ∙10-6, where the last error reflects the uncertainty on ĉ.The branching ratio result presented here agrees with previous experimental results, improving the precision of the measurement by at least a factor of five. The precision on the ĉ measurement has been improved by approximately a factor of three. A slight disagreement with the O(p6) ChPT branching ratio prediction as a function of ĉ has been observed. This mightrnbe due to the possible existence of non-negligible terms not yet included in the theory. Within the scope of this thesis, η-η' mixing effects in O(p4) ChPT have also been measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N~90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of 241-Am could be measured directly for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LHCb experiment at the LHC, by exploiting the high production cross section for $c\overline{c}$ quark pairs, offers the possibility to investigate $\mathcal{CP}$ violation in the charm sector with a very high precision.\\ In this thesis a measurement of time-integrated \(\mathcal{CP}\) violation using $D^0\rightarrow~K^+K^-$ and $D^0\rightarrow \pi^+\pi^-$ decays at LHCb is presented. The measured quantity is the difference ($\Delta$) of \(\mathcal{CP}\) asymmetry ($\mathcal{A}_{\mathcal{CP}}$) between the decay rates of $D^0$ and $\overline{D}^0$ mesons into $K^+K^–$ and $\pi^+\pi^-$ pairs.\\ The analysis is performed on 2011 data, collected at \(\sqrt{s}=7\) TeV and corresponding to an integrated luminosity of 1 fb\(^{-1}\), and 2012 data, collected at \(\sqrt{s}=8\) TeV and corresponding to an integrated luminosity of 2 fb\(^{-1}\).\\ A complete study of systematic uncertainties is beyond the aim of this thesis. However the most important systematic of the previous analysis has been studied. We find that this systematic uncertainty was due to a statistical fluctuation and then we demonstrate that it is no longer necessary to take into account.\\ By combining the 2011 and 2012 results, the final statistical precision is 0.08\%. When this analysis will be completed and published, this will be the most precise single measurement in the search for $\mathcal{CP}$ violation in the charm sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LHCb experiment has been designed to perform precision measurements in the flavour physics sector at the Large Hadron Collider (LHC) located at CERN. After the recent observation of CP violation in the decay of the Bs0 meson to a charged pion-kaon pair at LHCb, it is interesting to see whether the same quark-level transition in Λ0b baryon decays gives rise to large CP-violating effects. Such decay processes involve both tree and penguin Feynman diagrams and could be sensitive probes for physics beyond the Standard Model. The measurement of the CP-violating observable defined as ∆ACP = ACP(Λ0b → pK−)−ACP(Λ0b →pπ−),where ACP(Λ0b →pK−) and ACP(Λ0b →pπ−) are the direct CP asymmetries in Λ0b → pK− and Λ0b → pπ− decays, is presented for the first time using LHCb data. The procedure followed to optimize the event selection, to calibrate particle identification, to parametrise the various components of the invariant mass spectra, and to compute corrections due to the production asymmetry of the initial state and the detection asymmetries of the final states, is discussed in detail. Using the full 2011 and 2012 data sets of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of about 3 fb−1, the value ∆ACP = (0.8 ± 2.1 ± 0.2)% is obtained. The first uncertainty is statistical and the second corresponds to one of the dominant systematic effects. As the result is compatible with zero, no evidence of CP violation is found. This is the most precise measurement of CP violation in the decays of baryons containing the b quark to date. Once the analysis will be completed with an exhaustive study of systematic uncertainties, the results will be published by the LHCb Collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riciclo degli apparecchi elettrici ed elettronici

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the measurement of the effective weak mixing angle wma in proton-proton collisions is described. The results are extracted from the forward-backward asymmetry (AFB) in electron-positron final states at the ATLAS experiment at the LHC. The AFB is defined upon the distribution of the polar angle between the incoming quark and outgoing lepton. The signal process used in this study is the reaction pp to zgamma + X to ee + X taking a total integrated luminosity of 4.8\,fb^(-1) of data into account. The data was recorded at a proton-proton center-of-mass energy of sqrt(s)=7TeV. The weak mixing angle is a central parameter of the electroweak theory of the Standard Model (SM) and relates the neutral current interactions of electromagnetism and weak force. The higher order corrections on wma are related to other SM parameters like the mass of the Higgs boson.rnrnBecause of the symmetric initial state constellation of colliding protons, there is no favoured forward or backward direction in the experimental setup. The reference axis used in the definition of the polar angle is therefore chosen with respect to the longitudinal boost of the electron-positron final state. This leads to events with low absolute rapidity have a higher chance of being assigned to the opposite direction of the reference axis. This effect called dilution is reduced when events at higher rapidities are used. It can be studied including electrons and positrons in the forward regions of the ATLAS calorimeters. Electrons and positrons are further referred to as electrons. To include the electrons from the forward region, the energy calibration for the forward calorimeters had to be redone. This calibration is performed by inter-calibrating the forward electron energy scale using pairs of a central and a forward electron and the previously derived central electron energy calibration. The uncertainty is shown to be dominated by the systematic variations.rnrnThe extraction of wma is performed using chi^2 tests, comparing the measured distribution of AFB in data to a set of template distributions with varied values of wma. The templates are built in a forward folding technique using modified generator level samples and the official fully simulated signal sample with full detector simulation and particle reconstruction and identification. The analysis is performed in two different channels: pairs of central electrons or one central and one forward electron. The results of the two channels are in good agreement and are the first measurements of wma at the Z resonance using electron final states at proton-proton collisions at sqrt(s)=7TeV. The precision of the measurement is already systematically limited mostly by the uncertainties resulting from the knowledge of the parton distribution functions (PDF) and the systematic uncertainties of the energy calibration.rnrnThe extracted results of wma are combined and yield a value of wma_comb = 0.2288 +- 0.0004 (stat.) +- 0.0009 (syst.) = 0.2288 +- 0.0010 (tot.). The measurements are compared to the results of previous measurements at the Z boson resonance. The deviation with respect to the combined result provided by the LEP and SLC experiments is up to 2.7 standard deviations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the Standard Model of particle physics (SM) provides an extremely successful description of the ordinary matter, one knows from astronomical observations that it accounts only for around 5% of the total energy density of the Universe, whereas around 30% are contributed by the dark matter. Motivated by anomalies in cosmic ray observations and by attempts to solve questions of the SM like the (g-2)_mu discrepancy, proposed U(1) extensions of the SM gauge group have raised attention in recent years. In the considered U(1) extensions a new, light messenger particle, the hidden photon, couples to the hidden sector as well as to the electromagnetic current of the SM by kinetic mixing. This allows for a search for this particle in laboratory experiments exploring the electromagnetic interaction. Various experimental programs have been started to search for hidden photons, such as in electron-scattering experiments, which are a versatile tool to explore various physics phenomena. One approach is the dedicated search in fixed-target experiments at modest energies as performed at MAMI or at JLAB. In these experiments the scattering of an electron beam off a hadronic target e+(A,Z)->e+(A,Z)+l^+l^- is investigated and a search for a very narrow resonance in the invariant mass distribution of the lepton pair is performed. This requires an accurate understanding of the theoretical basis of the underlying processes. For this purpose it is demonstrated in the first part of this work, in which way the hidden photon can be motivated from existing puzzles encountered at the precision frontier of the SM. The main part of this thesis deals with the analysis of the theoretical framework for electron scattering fixed-target experiments searching for hidden photons. As a first step, the cross section for the bremsstrahlung emission of hidden photons in such experiments is studied. Based on these results, the applicability of the Weizsäcker-Williams approximation to calculate the signal cross section of the process, which is widely used to design such experimental setups, is investigated. In a next step, the reaction e+(A,Z)->e+(A,Z)+l^+l^- is analyzed as signal and background process in order to describe existing data obtained by the A1 experiment at MAMI with the aim to give accurate predictions of exclusion limits for the hidden photon parameter space. Finally, the derived methods are used to find predictions for future experiments, e.g., at MESA or at JLAB, allowing for a comprehensive study of the discovery potential of the complementary experiments. In the last part, a feasibility study for probing the hidden photon model by rare kaon decays is performed. For this purpose, invisible as well as visible decays of the hidden photon are considered within different classes of models. This allows one to find bounds for the parameter space from existing data and to estimate the reach of future experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo lavoro di tesi è stata investigata la possibilità di utilizzare i metallo-esacianoferrati, in particolare il nichel-esacianoferrato (NiHCF) ed indio-esacianoferrato (InHCF), come setacci ionici, per la rimozione selettiva di cationi di terre rare. In particolare si è voluto studiare l’influenza di cationi diversi dal K+ e la loro capacità di intercalare nel reticolo cristallino dell’InHCF e NiHCF. Grazie alla proprietà di scambio ionico, gli esacianoferrati sono in grado di fungere da setacci ionici. I cationi (ad esempio K+) intercalati nella struttura possono essere scambiati con cationi più pesanti, fino al raggiungimento di un certo limite, dopo il quale un ulteriore scambio è sfavorito dalle interazioni repulsive tra gli ioni carichi positivamente. I campioni di indio-esacianoferrato (InHCF) e nichel-esacianoferrato (NiHCF) sono stati sintetizzati sia per via elettrochimica che per via chimica e sono stati caratterizzati utilizzando tecniche elettrochimiche (in particolare la voltammetria ciclica), IR, XRF, TGA e TEM. In questo studio è stato dimostrato come l’InHCF ed il NiHCF riescano a scambiare in modo selettivo cationi di terre rare e possano quindi essere considerati ottimi candidati nella sintesi e produzione di setacci molecolari.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association of a granulomatous uveitis and congenital cataract and is rarely observed in newborn children. We describe the history of two patients presenting simultaneously with these two features in the absence of a TORCH infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report about a rare case of acute abdomen in a 43 years old female patient who noticed a sudden onset of severe lower abdominal pain, increasing in strength within a few hours. The transabdominal and transvaginal ultrasound showed an enlarged leiomyomatous uterus with a questionable torsion of a pedunculated subserous leiomyoma. The following magnetic resonance imaging confirms this diagnosis. During the laparoscopy a myomectomy has been performed.