980 resultados para Radiogenic isotope


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120-220 kyr) of the PETM reflects the rapid enhancement of negative feedback mechanisms within Earth's exogenic carbon cycle that served the dual function of buffering ocean pH and reducing atmospheric greenhouse gas levels. Detailed study of the PETM stratigraphy from Ocean Drilling Program Site 690 (Weddell Sea) reveals that the CIE recovery period, which postdates the CIE onset by ~80 kyr, is represented by an expanded (~2.5 m thick) interval containing a unique planktic foraminiferal assemblage strongly diluted by coccolithophore carbonate. Collectively, the micropaleontological and sedimentological changes preserved within the CIE recovery interval reflect a transient state when ocean-atmosphere chemistry fostered prolific coccolithophore blooms that suppressed the local lysocline to relatively deeper depths. A prominent peak in the abundance of the clay mineral kaolinite is associated with the CIE recovery interval, indicating that continental weathering/runoff intensified at this time as well (Robert and Kennett, 1994). Such parallel stratigraphic changes are generally consonant with the hypothesis that enhanced continental weathering/runoff and carbonate precipitation helped sequester carbon during the PETM recovery period (e.g., Dickens et al., 1997, doi:10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2 ; Zachos et al., 2005, doi:10.1126/science.1109004).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planktonic foraminiferal oxygen isotope records from the western and eastern tropical Pacific and Atlantic Oceans suggest a southward shift in the Intertropical Convergence Zone toward its modern location between 4.4 and 4.3 Ma. A concomitant shift in the carbon isotope compositions of Atlantic benthic foraminifera provides strong evidence for an increased thermohaline overturn at this time. We suggest that the southward shift of the Intertropical Convergence Zone and associated change in trade-wind circulation altered equatorial surface hydrography, increased the advection of warmer and more saline surface waters into the subtropical and North Atlantic, and contributed to thermohaline overturn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A core from the Mid-Atlantic Ridge at 43.5°N and ~3 km water depth shows distinct evidence of the deglacial events known as Heinrich event 1 (probably the marine equivalent of Oldest Dryas cooling in Europe) and the Younger Dryas. The Heinrich event, dated at three levels to between 14.3 and 15.0 ka, is marked by a minimum in foraminifera per gram, by maxima in rates of sedimentation, ice rafted debris per gram, and relative abundance of N. pachyderma (s.), and by a delta18O minimum in planktonic foraminifera. The Younger Dryas event is marked by peak abundance of N. pachyderma (s.) and a planktonic delta18O maximum. Benthic foraminiferal delta13C reaches minimum values during both the Heinrich event and the Younger Dryas. Our data indicate pronounced changes in surface water properties were coupled with reduced production of North Atlantic Deep Water at each of these times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen isotope records of G. sacculifer and Pulleniatina in the uppermost three cores at Ocean Drilling Program Hole 805C span the last 1.6 m.y., an estimate based on Fourier stratigraphy. The last 700,000 yr are dominated by both eccentricity and obliquity-related orbital fluctuations. The range of variation of delta18O values is about 1.5?, of which ca. 75% may be assigned to global ice-volume effect. The remainder of the range is shared by the effects of surface temperature variation, thermocline depth change (in the case of Pulleniatina, especially), and differential dissolution. Before 1 Ma, obliquity-related fluctuations dominate. The transition between obliquity- and eccentricity-dominated time occurs between ca. 1 and 0.7 Ma. It is marked by irregularities in phase relationships, the source of which is not clear. The age of the Brunhes/Matuyama boundary is determined as 794,000 yr by obliquity counting. However, an age of 830,000 yr also is compatible with the counts of both eccentricity and obliquity cycles. In the first case, Stage 19 (which contains the boundary) is coincident with the crest of the 19th obliquity cycle, setting the first crest downcore equal to zero, and counting backward (o19). In the second, Stage 19 coincides with o20. No evidence was found for fluctuations related to precession (23 and 19 k.y.) rising above the noise level, using plain Fourier expansion on the age model of the entire series. Detailed stratigraphic comparison with the Quaternary record of Hole 806B allows the recognition of major dissolution events (which increase the difference in delta18O values of G. sacculifer at the two sites). These occur at Stages 11-13, 16-17, and near 1.5 Ma (below o33).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution delta18O records from the equatorial Pacific (site 503B), equatorial Atlantic (site 665A), and North Atlantic (site 606A) based on the benthic foraminifera Cibicidoides wuellerstorfi show the 2.4 Ma onset of major northern hemispheric glaciation to be a package of three events occurring at 2.39, 2.35, and 2.31 Ma in which a periodicity of about 40 kyr is evident. The amplitude of the signals at the three sites indicates that these events were 1/2 to 2/3 the size of the latest Quaternary glaciation and also indicates cooling of northern source bottom water by 2.7°-4.1°C relative to southern source water during glaciations. Carbon isotopes indicate that southern source waters were less oxygenated than in the Quaternary and that there was reduced production of northern source water during glacial intervals. The dominant presence of southern source water in the eastern basin of the equatorial Atlantic, regardless of climatic cycles, throughout the late Pliocene indicates a greater influence of these waters relative to northern source waters in the late Pliocene ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large changes in benthic foraminiferal delta180 and delta13C occurred during the Pliocene (between 3.0 and 2.0 Ma) at Hole 665A. Oxygen isotopic compositions increased to maximum values at 2.4 Ma, correlating with an 18O enrichment observed at Hole 552A and other locations (Shackleton et al., 1984). As at Hole 606 (Keigwin, 1986), however, maximum delta180 values at 2.4 Ma were not as great as at Hole 552A, and enrichments in delta180 also occurred before 2.4 Ma. We believe that the section representing sediments from 2.5 to 2.7 or 2.8 Ma is missing at Hole 552A because of incomplete core recovery. Consequently, the older delta180 increases are not found at Hole 552A. Benthic foraminiferal delta13C values are much lower at Hole 665A than at Hole 552A, approaching the low values observed in the Pliocene Pacific Ocean. This geographic distribution of delta13C suggests that, like late Quaternary glaciations, the equatorial Atlantic Ocean was dominated during the Pliocene by deep water that originated in the Southern Ocean and had chemical characteristics very similar to the Pacific Ocean. Reduced O2 values were probably associated with low delta13C values and contributed to increased preservation of organic carbon during enriched 180 intervals of the Pliocene equatorial Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and d7Li values. The sediment piles in front of the Mariana and South Sandwich arcs largely consist of pelagic sediments (clays and oozes). The pelagic clays have high Li contents (up to 57.3 ppm) and Li isotope compositions ranging from +1.3? to +4.1?. The oozes have lower Li contents (7.3-16 ppm) with d7Li values of the diatom oozes from the South Sandwich lower (+2.8? to +3.2?) than those of the radiolarian oozes from the Mariana arc (+8.1? to +14.5?). Mariana sediment also contains a significant portion of volcanogenic material, which is characterised by a moderate Li content (14 ppm) and a relatively heavy isotope composition (+6.4?). Sediments from the Banda and Lesser Antilles contain considerable amounts of continental detritus, and have high Li contents (up to 74.3 ppm) and low d7Li values (around 0?), caused by weathering of continental bedrock. East Sunda sediments largely consist of calcareous oozes. These carbonate sediments display intermediate to high Li contents (2.4-41.9 ppm) and highly variable d7Li values (-1.6? to +12.8?). Basaltic oceanic crust samples from worldwide DSDP and ODP drill cores are characterised by enrichment of Li compared to fresh MORB (6.6-33.1 vs. 3.6-7.5 ppm, respectively), and show a large range in Li isotope compositions (+1.7? to +11.8?). The elemental and isotopic enrichment of Li in altered basalts is due to the uptake of isotopically heavy seawater Li during weathering. However, old oceanic crust samples from Sites 417/418 exhibit lighter Li isotope compositions compared to young basaltic crust samples from Sites 332B and 504B. This lighter Li isotope signature in old crust is unexpected and further research is needed to explore this issue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable 'icehouse' climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene-Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) d18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ~25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Br/Cl, Li/Cl and B/Cl ratios and boron isotope compositions of hypersaline pore fluids from DSDP Sites 372 and 374 were measured in an attempt to evaluate the origin of the brines. In Site 374 the relationships between the Cl concentrations (up to 5000 mM) and Br/Cl (~0.012), Na/Cl (as low as 0.1), B/Cl (0.0025), and d11B values (43-55?) of the deep pore water between 380 and 405 mbsf, located within the Messinian sediments, reflect remnants of ~65-fold evaporated sea water. The original evaporated sea water was modified by: (1) dilution with overlying or less saline water by about 30%; and (2) slight dissolution of NaCl evaporites. The variations in d11B show a continuous increase in d11B values with depth in Site 374, up to 66.7? at a depth of 300 mbsf (Upper Pliocene marl sediments). The conspicuous 11B enrichment trend is consistent with elemental boron depletion, which was calculated from the expected boron concentrations of evaporated sea water with corresponding Br/Cl and Na/Cl ratios. Li/Cl variations also show a depletion of Li relative to evaporated sea water. The apparent depletions of B and Li, as well as the 11B enrichment, reflect uptake of these elements by clay minerals at low water/sediment ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detailed structure and timing of the penultimate deglaciation are insufficiently defined yet critical for understanding mechanisms responsible for abrupt climate change. Here we present oxygen isotope records (from planktonic and benthic foraminifera) at unprecedented resolution encompassing late marine oxygen isotope stage (MIS) 6 and Termination II (ca. 150-120 ka) from the Santa Barbara Basin, supported by additional southern California margin records, a region highly sensitive to millennial-scale climate oscillations during the last deglaciation. These records reveal millennial- and centennial-scale climate variability throughout the interval, including an interstadial immediately preceding the deglaciation, a brief warm event near the beginning of Termination II, and a Bølling-Allerød-Younger Dryas-like climate oscillation midway through the deglaciation. Recognition of these events in an oxygen isotope record from a 230Th-dated stalagmite allows the adoption of this radiometric chronology for the California margin records. This chronology supports the Milankovitch theory of deglaciation. The suborbital history of climate variability during Termination II may account for records of early deglaciation.