969 resultados para Radioactive decay
Resumo:
Purpose: The aim of the present study was to evaluate the clinical efficacy of an experimental dentifrice (CH) containing an antimicrobial agent (1% chloramine-T). Materials and Methods: A clinical, fully randomised, double-blind comparative study was designed for 30 selected patients aged 15 to 50 years, with no periodontal disease, decay or other oral diseases, good general health and the presence of dental plaque and sulcus bleeding. Baseline Turesky modified plaque index (PI) and sulcus bleeding index (SBI) were scored for all patients. Volunteers randomly received the experimental dentifrice (CH) or a commercial-brand dentifrice containing triclosan (TR). Both dentifrices were provided in identical, number-labelled tubes, and the subjects were instructed to use the supplied dentifrice only for their usual oral hygiene, three times a day for a duration of 7 days. After 7-day use of dentifrices, the PI and SBI were assessed again. The data obtained were subjected to the Kruskal Wallis test, followed by Dunn`s post hoc test. Results: After 7-day use of dentifrices, the PI scores diminished significantly for both evaluated dentifrices. The SBI values decreased significantly for both experimental and commercial-brand dentifrices. Conclusions: Both dentifrices reduced PI and SBI. By comparing the experimental and gold-standard dentifrice, it was found that there was no statistically significant difference between the PI and SBI scores after their use, suggesting that they exerted a similar effect on the oral health indexes.
Resumo:
The formation of radicals in poly(vinyl alcohol), PVA, powder irradiated at 77 K by gamma -rays and the transformations of these radicals during photolysis with visible wavelengths and on thermal annealing have been studied. After irradiation a four-line ESR spectrum was observed. It was assigned to a triplet of the C-alpha-radical (38%), with a splitting of 3.27 mT, superimposed on a doublet (62%) with a splitting of 2.7 mT. The doublet appears to be composed of two radicals, one of which is photo-bleachable (58%) and the other which is not photo-bleachable (42%). This suggests that the latter radical is a neutral radical. The photo-bleachable component of the doublet has been assigned to a carbonyl anion radical. but the second doublet due to a neutral radical is unassigned. The total G-value for formation of radicals at 77 K was found to be 2.41 +/- 0.03. Upon illumination with visible light, the anion radicals were removed and the doublet components or the spectrum diminished in intensity, while the three-line spectrum of the C-alpha-radical became more clearly visible. This transition was due to the photo-detachment of electrons from traps which were proposed to be located on carbonyl groups in the polymer resulting from incomplete hydrolysis of the vinyl acetate. The photo-decay of the anion radicals could be satisfactorily described by a two-stage process. The first stage comprised the decay of approximately 80% of the anion radicals present, while the second stage was associated with the decay of the remaining 20%. Subsequent thermal annealing of a photolysed sample to 290 K led to a change in the shape of the spectrum to form a more clearly defined triplet, As the doublet of the neutral radical decays on thermal annealing between 150 and 250K, the C-alpha-radical is formed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.
Resumo:
Non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, such as in high Q cavities, is treated using a quasimode description, and the pseudo mode theory for single quantum reservoir excitations is obtained via Fano diagonalisation. The atomic transitions are coupled to a discrete set of (cavity) quasimodes, which are also coupled to a continuum set of (external) quasimodes with slowly varying coupling constants. Each pseudomode corresponds to a cavity quasimode, and the original reservoir structure is obtained in expressions for the equivalent atom-true mode coupling constants. Cases of multiple excitation of the reservoir are now treatable via Markovian master equations for the atom-discrete quasimode system.
Resumo:
Nineteen persons with Parkinson's disease (PD) and 19 matched control participants completed a battery of online lexical decision tasks designed to isolate the automatic and attentional aspects of semantic activation within the semantic priming paradigm. Results highlighted key processing abnormalities in PD. Specifically, persons with PD exhibited a delayed time course of semantic activation. In addition, results suggest that experimental participants were unable to implicitly process prime information and, therefore, failed to engage strategic processing mechanisms in response to manipulations of the relatedness proportion. Results are discussed in terms of the 'Gain/Decay' hypothesis (Milberg, McGlinchey-Berroth, Duncan, & Higgins, 1999) and the dopaminergic modulation of signal to noise ratios in semantic networks.
Resumo:
The continuous parametric pumping of a superconducting lossy QED cavity supporting a field prepared initially as a superposition of coherent states is discussed. In contrast to classical pumping, we verify that the phase sensitivity of the parametric pumping makes the asymptotic behaviour of the cavity field state strongly dependent on the phase theta of the coherent state \ alpha > = \ alpha \e(i theta)>. Here we consider theta = pi /4, -pi /4 and we analyse the evolution of the purity of the superposition states with the help of the linear entropy and fidelity functions. We also analyse the decoherence process quantitatively through the Wigner function, for both states, verifying that the decay is slightly modified when compared to the free decoherence case: for theta = -pi /4 the process is accelerated while for theta = pi /4 it is delayed.
Resumo:
The activated sludge comprises a complex microbiological community. The structure (what types of microorganisms are present) and function (what can the organisms do and at what rates) of this community are determined by external physico -chemical features and by the influent to the sewage treatment plant. The external features we can manipulate but rarely the influent. Conventional control and operational strategies optimise activated sludge processes more as a chemical system than as a biological one. While optimising the process in a short time period, these strategies may deteriorate the long-term performance of the process due to their potentially adverse impact on the microbial properties. Through briefly reviewing the evidence available in the literature that plant design and operation affect both the structure and function of the microbial community in activated sludge, we propose to add sludge population optimisation as a new dimension to the control of biological wastewater treatment systems. We stress that optimising the microbial community structure and property should be an explicit aim for the design and operation of a treatment plant. The major limitations to sludge population optimisation revolve around inadequate microbiological data, specifically community structure, function and kinetic data. However, molecular microbiological methods that strive to provide that data are being developed rapidly. The combination of these methods with the conventional approaches for kinetic study is briefly discussed. The most pressing research questions pertaining to sludge population optimisation are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Using the fastest dental X-ray film available is an easy way of reducing exposure to ionizing radiation. However, the diagnostic ability of fast films for the detection of proximal surface caries must be demonstrated before these films will become universally accepted. Methods: Extracted premolar and molar teeth were arranged to simulate a bitewing examination and radiographed using Ultraspeed and Ektaspeed Plus dental X-ray films. Three different exposure times were used for each film type. Six general dentists were used to determine the presence and depth of the decay in the proximal surfaces of the teeth radiographed. The actual extent of the decay in the teeth was determined by sectioning the teeth and examining them under a microscope. Results: There was no significant difference between the two films for the mean correct diagnosis. However, there was a significant difference between the means for the three exposure times used for Ultraspeed film. The practitioners used were not consistent in their ability to make a correct diagnosis, or for the film for which they got the highest correct diagnosis. Conclusions: Ektaspeed Plus dental X-ray film is just as reliable as Ultraspeed dental X-ray film for the detection of proximal surface decay. The effect of underexposure was significant for Ultraspeed, but not for Ektaspeed Plus. Patient exposure can be reduced significantly with no loss of diagnostic ability by changing from Ultraspeed X-ray film to Ektaspeed Plus X-ray film.
Resumo:
Management are keen to maximize the life span of an information system because of the high cost, organizational disruption, and risk of failure associated with the re-development or replacement of an information system. This research investigates the effects that various factors have on an information system's life span by understanding how the factors affect an information system's stability. The research builds on a previously developed two-stage model of information system change whereby an information system is either in a stable state of evolution in which the information system's functionality is evolving, or in a state of revolution, in which the information system is being replaced because it is not providing the functionality expected by its users. A case study surveyed a number of systems within one organization. The aim was to test whether a relationship existed between the base value of the volatility index (a measure of the stability of an information system) and certain system characteristics. Data relating to some 3000 user change requests covering 40 systems over a 10-year period were obtained. The following factors were hypothesized to have significant associations with the base value of the volatility index: language level (generation of language of construction), system size, system age, and the timing of changes applied to a system. Significant associations were found in the hypothesized directions except that the timing of user changes was not associated with any change in the value of the volatility index. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.
Resumo:
Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.
Resumo:
We extend the earlier model of condensate growth of Davis et at (Davis M J, Gardiner C W and Ballagh R J 2000 Phys. Rev. A 62 063608) to include the effect of gravity in a magnetic trap. We carry out calculations to model the experiment reported by Kohl et al (Kohl M, Davis M J, Gardiner C W, Hansch T and Esslinger T 2001 Preprint cond-mat/0106642) who study the formation of a rubidium Bose-Einstein condensate for a range of evaporative cooling parameters. We find that, in the regime where our model is valid, the theoretical curves agree with all the experimental data with no fitting parameters. However, for the slowest cooling of the gas the theoretical curve deviates significantly from the experimental curves. It is possible that this discrepancy may be related to the formation of a quasicondensate.
Resumo:
The spin-spin relaxation times, T-2, of hydrated samples of poly(hydroxymethyl methacrylate), PHEMA, poly(tetrahydrofurfuryl methacrylate),PTHFMA, and the,corresponding HEMA-THFMA copolymers have been examined to probe the states of,the imbibed water in these polymers. The decay in the transverse magnetization of water. in fully hydrated samples of PHEMA, PTHFMA, and copolymers of HEMA and THFMA was described by a multiexponential function. The short component of T-2 was interpreted as water molecules that were strongly interacting with the polymer chains. The intermediate component of T-2 was assigned to water residing in the porous structure of the samples. The long component of T-2 was believed to arise from water residing in the remnants of cracks formed in the polymer network during water sorption.
Resumo:
The self-diffusion coefficients for water in a series of copolymers of 2-hydroxyethyl methacrylate, HEMA, and tetrahydrofurfuryl methacrylate, THFMA, swollen with water to their equilibrium states have been studied at 310 K using PFG-NMR. The self-diffusion coefficients calculated from the Stejskal-Tanner equation, D-obs, for all of the hydrated polymers were found to be dependent on the NMR storage time, as a result of spin exchange between the proton reservoirs of the water and the polymers, reaching an equilibrium plateau value at long storage times. The true values of the diffusion coefficients were calculated from the values of D-obs, in the plateau regions by applying a correction for the fraction of water protons present, obtained from the equilibrium water contents of the gels. The true self-diffusion coefficient for water in polyHEMA obtained at 310 K by this method was 5.5 x 10(-10) m(2) s(-1). For the copolymers containing 20% HEMA or more a single value of the self-diffusion coefficient was found, which was somewhat larger than the corresponding values obtained for the macroscopic diffusion coefficient from sorption measurements. For polyTHFMA and copolymers containing less than 20% HEMA, the PFG-NMR stimulated echo attenuation decay curves and the log-attenuation plots were characteristic of the presence of two diffusing water species. The self-diffusion coefficients of water in the equilibrium-hydrated copolymers were found to be dependent on the copolymer composition, decreasing with increasing THFMA content.