917 resultados para REGULADOR DE CONDUCTANCIA DE TRANSMEMBRANA DE FIBROSIS QUÍSTICA (CFTR)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common autosomal recessive disorder affecting Caucasian populations. The pathophysiology of this disorder predisposes the lungs of affected patients to chronic infection, typically by Pseudomonas aeruginosa, which is the main cause of morbidity and mortality. Recently, attention has focused on aerosolised polymyxins, which are given prophylactically in an effort to limit infection and subsequent lung damage. This class of antimicrobial compounds is highly active against P. aeruginosa and possess the advantage that resistance rarely develops. However, the rapid lung clearance of antibiotics is a well documented phenomenon and it was postulated that polymyxin treatment could be further improved by liposomal encapsulation. As part of the development of liposomal polymyxin B, analytical methodology (radiolabelling, HPLC and protein assay) applicable to liposomal formulations was established. Liposomes were prepared by the dehydration-rehydration method and encapsulation efficiencies were determined for a number of phospholipid compositions. Vesicles were characterised with respect to size, zeta potential, morphology and release characteristics. The surface hydrophobicity of vesicles was quantified by hydrophobic interaction chromatography and it was found that this method produced comparable results to techniques conventionally used to assess this property. In vivo testing of liposomal polymyxins demonstrated that encapsulation successfully prevented the rapid pulmonary clearance of PXB. Antimicrobial activity of liposomal formulations was quantified and found to be dependent on both the vesicle surface characteristics and their release profile. Investigation of the interaction of PXB with lipopolysaccharide was undertaken and results demonstrated that PXB caused significant structural distortion of the lipid A region. This may be sufficient to abrogate the potentiating action of LPS in the inflammatory cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major cause of death in CF is a continuous inflammation of the lungs colonised with Pseudomonas aeruginosa and occasionally also with Burkholderia cepacia. A combination of serum IgG to LPS and serum PCT levels were found to be good markers for detection of early colonisation with P. aeruginosa. Colomycin sulphomethate (colistin E) is one of the antibiotics used to treat P. aeruginosa infections in CF. Electrophoretic methods were developed to monitor the rate of conversion of colomycin sulphomethate to the active form of the drug. Antimicrobial activity towards P. aeruginosa was generated as the sulphomethate substituents were released. Clinical resistance of P. aeruginosa to colomycin is rare, but a number of isolates have been isolated. Twelve colomycin-resistant clinical isolates were investigated to determine the mechanism of resistance. It was found that the low level of resistance was due to over expression of outer membrane protein H (OprH) in 5 isolates. A novel mechanism of resistance involving modification of the phosphate groups in LPS was identified in one of the isolates. Drugs which reduce inflammation in infected CF lungs would be of great advantage for therapy. Reducing inflammation would preserve the lung function and increase the quality of life for CF patients. Antibiotics like tetracyclines, macrolides and polymyxins were tested for their potential anti-inflammatory effects using cultured human monocytic (U937) cells which secrete the pro-inflammatory cytokines IL1- and TNF- in response to LPS from P. aeruginosa and B. cepacia. It was found that tetracyclines, and especially doxycycline, are good inhibitors of cytokine release by U937 cells and therefore could reduce the inflammatory cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic experimental lung infection in rats was induced by intratracheal inoculation of agar beads containing Pseudomonas aeruginosa. Bacteria were recovered directly without subculture from the lungs of rats at 14 days post-infection and the outer membrane (OM) antigens were studied. The results indicated that bacteria grew under iron-restricted conditions as revealed by the expression of several iron-regulated membrane proteins (IRMPs) which could also be observed when the isolate was grown under iron-depleted conditions in laboratory media. The antibody response to P. aeruginosa OM protein antigens was investigated by immunoblotting with serum and lung fluid from infected rats. These fluids contained antibodies to all the major OM proteins, including the IRMPs, and protein H1. Results obtained using immunoblotting and enzyme-linked immunosorbent assay indicated that lipopolysaccharide (LPS) was the major antigen recognised by antibodies in sera from infected rats. The animal model was used to follow the development of the immune response to P. aeruginosa protein and LPS antigens. Immunoblotting was used to investigate the antigens recognised by antibodies in sequential serum samples. An antibody response to the IRMPs and OM proteins D, E, G and H1 and alao to rough LPS was detected as early as 4 days post-infection. Results obtained using immunoblotting and crossed immunoelectrophoresis techniques indicated that there was a progressive increase in the number of P. aeruginosa antigens recognised by antibodies in these sera. Both iron and magnesium depletion influenced protein H1 production. Antibodies in sera from patients with infections due to P. aeruginosa reacted with this antigen. Results obtained using quantitative gas-liquid chromatographic analysis indicated that growth phase and magnesium and iron depletion also affected the amount of LPS fatty acids, produced by P. aeruginosa. The silver stained SDS-polyacrylamide gels of proteinase K digested whole cell lysates of P. aeruginosa indicated that the O-antigen and core LPS were both affected by growth phase and specific nutrient depletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis investigates targeted (locally and systemically) delivery of a novel group of inhibitors of enzyme transglutaminases (TGs). TGs are a widely distributed group of enzymes that catalyse the formation of isopeptide bonds between the y-carboxamide group of protein-bound glutamines and the a-amino group of protein-bound lysines or polyamines. The first group of the novel inhibitors tested were the tluorescently labelled inhibitors of Factor XIIIa (FXIIIa). These small, non-toxic inhibitors have the potential to prevent stabilisation of thrombi by FXIIIa and consequently increase the natural rate of thrombolysis, in addition it reduces staphylococcal colonisation of catheters by inhibiting their FXIIIa¬mediated cross-linking to blood clot proteins on the central venous catheter (CVCs) surface. The aim of this work was to incorporate the FXIIIa inhibitor either within coating of polyurethane (PU) catheters or to integrate it into silicone catheters, so as to reduce the incidence of thrombotic occlusion and associated bacterial infection in CVCs. The initial work focused on the incorporation of FXIIIa inhibitors within polymeric coatings of PU catheters. After defining the key characteristics desired for an effective polymeric-coating, polyvinylpyrrolidone (PVP), poly(lactic-co-glycolic acid) (PLGA) or their combination were studies as polymers of choice for coating of the catheters_ The coating was conducted by dip-coating method in a polymer solution containing the inhibitor. Upon incubation of the inhibitor-and polymer-coated strips in buffer, PVP was dissolved instantly, generating fast and significant drug release, whilst PLGA did not dissolve, yielding a slow and an insufficient amount of drug release. Nevertheless, the drug release profile was enhanced upon employing a blend solution of PVP and PLGA. The second part of the study was to incorporate the FXIIIa inhibitor into a silicone elastomer; results demonstrated that FXIIIa inhibitor can be incorporated and released from silicone by using citric acid (CA) and sodium bicarbonate (SB) as additives and the drug release rate can be controlled by the amount of incorporated additives in the silicone matrix. Furthermore, it was deemed that the inhibitor was still biologically active subsequent to being released from the silicone elastomer strips. Morphological analysis confirmed the formation of channels and cracks inside the specimens upon the addition of CA and SB. Nevertheless, the tensile strength, in addition to Young's modulus of silicone elastomer strips, decreased constantly with an increasing amount of amalgamated CA/ SB in the formulations. According to our results, incorporation of FXIIIa inhibitor into catheters and other medical implant devices could offer new perspectives in preventing bio-material associated infections and thrombosis. The use of tissue transglutaminase (T02) inhibitor for treating of liver fibrosis was also investigated. Liver fibrosis is characterized by increased synthesis and decreased degradation of the extracellular matrix (ECM). Transglutaminase-mediated covalent cross-linking is involved in the stabilization of ECM in human liver fibrosis. Thus, TG2 inhibitors may be used to counteract the decreased degradation of the ECM. The potential of a liposome based drug delivery system for site specific delivery of the fluorescent TG2 inhibitor into the liver was investigated; results indicated that the TG2 inhibitor can be successfully integrated into liposomes and delivered to the liver, therefore demonstrating that liposomes can be employed for site-specific delivery of TG2 inhibitors into the liver and TG2 inhibitor incorporating liposomes could offer a new approach in treating liver fibrosis and its end stage disease cirrhosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians and arises due to mutations in a chloride channel, called cystic fibrosis transmembrane conductance regulator. A hallmark of this disease is the chronic bacterial infection of the airways, which is usually, associated with pathogens such as Pseudomonas aeruginosa, S. aureus and recently becoming more prominent, B. cepacia. The excessive inflammatory response, which leads to irreversible lung damage, will in the long term lead to mortality of the patient at around the age of 40 years. Understanding the pathogenesis of CF currently relies on animal models, such as those employing genetically-modified mice, and on single cell culture models, which are grown either as polarised or non-polarised epithelium in vitro. Whilst these approaches partially enable the study of disease progression in CF, both types of models have inherent limitations. The overall aim of this thesis was to establish a multicellular co-culture model of normal and CF human airways in vitro, which helps to partially overcome these limitations and permits analysis of cell-to-cell communication in the airways. These models could then be used to examine the co-ordinated response of the airways to infection with relevant pathogens in order to validate this approach over animals/single cell models. Therefore epithelial cell lines of non-CF and CF background were employed in a co-culture model together with human pulmonary fibroblasts. Co-cultures were grown on collagen-coated permeable supports at air-liquid interface to promote epithelial cell differentiation. The models were characterised and essential features for investigating CF infections and inflammatory responses were investigated and analysed. A pseudostratified like epithelial cell layer was established at air liquid interface (ALI) of mono-and co-cultures and cell layer integrity was verified by tight junction (TJ) staining and transepithelial resistance measurements (TER). Mono- and co-cultures were also found to secrete the airway mucin MUC5AC. Influence of bacterial infections was found to be most challenging when intact S. aureus, B. cepacia and P. aeruginosa were used. CF mono- and co-cultures were found to mimic the hyperinflammatory state found in CF, which was confirmed by analysing IL-8 secretions of these models. These co-culture models will help to elucidate the role fibroblasts play in the inflammatory response to bacteria and will provide a useful testing platform to further investigate the dysregulated airway responses seen in CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Humans with inactivating mutations in peroxisomal proliferators activated receptor gamma (PPAR?) typically develop a complex metabolic syndrome characterized by insulin resistance, diabetes, lipodystrophy, hypertension, and dyslipidaemia which is likely to increase their cardiovascular risk. Despite evidence that the activation of PPAR? may prevent cardiac fibrosis and hypertrophy, recent evidence has suggested that pharmacological activation of PPAR? causes increased cardiovascular mortality. In this study, we investigated the effects of defective PPAR? function on the development of cardiac fibrosis and hypertrophy in a murine model carrying a human dominant-negative mutation in PPAR?. Methods and results: Mice with a dominant-negative point mutation in PPAR? (P465L) and their wild-type (WT) littermates were treated with either subcutaneous angiotensin II (AngII) infusion or saline for 2 weeks. Heterozygous P465L and WT mice developed a similar increase in systolic blood pressure, but the mutant mice developed significantly more severe cardiac fibrosis to AngII that correlated with increased expression of profibrotic genes. Both groups similarly increased the heart weight to body weight ratio compared with saline-treated controls. There were no differences in fibrosis between saline-treated WT and P465L mice. Conclusion: These results show synergistic pathogenic effects between the presence of defective PPAR? and AngII-induced hypertension and suggest that patients with PPAR? mutation and hypertension may need more aggressive therapeutic measures to reduce the risk of accelerated cardiac fibrosis. © The Author 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretory IgA contributes to humoral defense mechanisms against pathogens targeting mucosal surfaces, and secretory component (SC) fulfills multiple roles in this defense. The aims of this study were to quantify total SC and to analyze the form of free SC in sputa from normal subjects, subjects with asthma, and subjects with cystic fibrosis (CF). Significantly higher levels of SC were detected in CF compared with both other groups. Gel filtration chromatography revealed that SC in CF was relatively degraded. Free SC normally binds interleukin (IL)-8 and inhibits its function. However, in CF sputa, IL-8 binding to intact SC was reduced. Analysis of the total carbohydrate content of free SC signified overglycosylation in CF compared with normal subjects and subjects with asthma. Monosaccharide composition analysis of free SC from CF subjects revealed overfucosylation and undersialylation, in agreement with the reported CF glycosylation phenotype. SC binding to IL-8 did not interfere with the binding of IL-8 to heparin, indicating distinct binding sites on IL-8 for negative regulation of function by SC and heparin. We suggest that defective structure and function of SC contribute to the characteristic sustained inflammatory response in the CF airways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: This study sought to investigate the effect of endothelial dysfunction on the development of cardiac hypertrophy and fibrosis. BACKGROUND: Endothelial dysfunction accompanies cardiac hypertrophy and fibrosis, but its contribution to these conditions is unclear. Increased nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) activation causes endothelial dysfunction. METHODS: Transgenic mice with endothelial-specific NOX2 overexpression (TG mice) and wild-type littermates received long-term angiotensin II (AngII) infusion (1.1 mg/kg/day, 2 weeks) to induce hypertrophy and fibrosis. RESULTS: TG mice had systolic hypertension and hypertrophy similar to those seen in wild-type mice but developed greater cardiac fibrosis and evidence of isolated left ventricular diastolic dysfunction (p < 0.05). TG myocardium had more inflammatory cells and VCAM-1-positive vessels than did wild-type myocardium after AngII treatment (both p < 0.05). TG microvascular endothelial cells (ECs) treated with AngII recruited 2-fold more leukocytes than did wild-type ECs in an in vitro adhesion assay (p < 0.05). However, inflammatory cell NOX2 per se was not essential for the profibrotic effects of AngII. TG showed a higher level of endothelial-mesenchymal transition (EMT) than did wild-type mice after AngII infusion. In cultured ECs treated with AngII, NOX2 enhanced EMT as assessed by the relative expression of fibroblast versus endothelial-specific markers. CONCLUSIONS: AngII-induced endothelial NOX2 activation has profound profibrotic effects in the heart in vivo that lead to a diastolic dysfunction phenotype. Endothelial NOX2 enhances EMT and has proinflammatory effects. This may be an important mechanism underlying cardiac fibrosis and diastolic dysfunction during increased renin-angiotensin activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed the safety and use of induced sputum (IS) in children with cystic fibrosis (CF). Forty-eight children (19 males) with CF, mean age 12.6 (range, 7.3-17.0) years and median forced expired volume in 1 sec (FEV1) 48% (range, 14-77%) predicted were recruited. Patients spontaneously expectorated sputum and then performed sputum induction by inhalation of nebulized 7% hypertonic saline. Samples were sent for bacteriological culture, and for measurement of the following inflammatory mediators: interleukin-8, myeloperoxidase, eosinophil cationic protein, and neutrophil elastase activity. FEV1 was performed before and after inhalation of hypertonic saline. There was no increase in mediator levels in IS compared to expectorated sputum (ES) samples. Only 3 patients demonstrated significant bronchoconstriction following inhalation of hypertonic saline, by the method used. From the ES samples, Pseudomonas aeruginosa was isolated in 13 patients, Staphylococcus aureus in 7 patients, Stenotrophomonas maltophilia in 1 patient, and both Pseudomonas aeruginosa and Staphylococcus aureus in 5 patients. All these organisms were found in the IS samples. However, in 2 patients whose ES grew no organisms, one patient's IS grew Pseudomonas aeruginosa, and the other patient's IS grew Staphylococcus aureus. In our study, sputum induction was safe, with no proinflammatory effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poster session - Paediatric cystic fibrosis and liver patients can be prescribed a number of different pharmaceutical preparations, often in liquid form - It is not uncommon for alcohol to be present in liquid preparations, often as a solvent - Although the quantity of alcohol present can be low, patients taking a number of alcohol-containing preparations may be at risk of toxicity - It has been found that only a few of the preparations used for both paediatric cystic fibrosis and liver patients contain alcohol - The quantity of alcohol present in these preparations is low and should not cause toxicity, even when the products are used in combination

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant human DNase (rhDNase) is an established treatment in cystic fibrosis (CF), but it may liberate cationic mediators bound to DNA in the airways. An alternative mucolytic therapy is hypertonic saline (HS); however, HS may potentiate neutrophilic inflammation. We compared the effect of rhDNase and HS on cationic proinflammatory mediators in CF sputum. In a randomized, crossover trial, 48 children with CF were allocated consecutively to 12 weeks of once-daily 2.5 mg rhDNase, alternate-day 2.5 mg rhDNase, and twice-daily 7% HS. Sputum levels of total interleukin-8 (IL-8), free IL-8, myeloperoxidase, eosinophil cationic protein, and neutrophil elastase (NE) activity were measured before and after each treatment. The change in mediator levels from baseline with daily rhDNase and HS was not significant; however, with alternate-day rhDNase, there was an increase in free IL-8. When changes in mediator levels with daily rhDNase were compared with alternate-day rhDNase and HS, no significant differences were detected. Only changes in NE activity were associated with changes in lung function. In summary, we were unable to show that rhDNase or HS promote airway inflammation in CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emerging role of the multifunctional enzyme, Transglutaminase 2 (TG2) in Cystic Fibrosis (CF) has been linked to its increased expression and intracellular transamidating activity. However, a full understanding of the molecular mechanisms involved still remains unclear despite numerous studies that have attempted to delineate this process. These mechanisms include the NFκB and TGFβ1 pathway amongst others. This study reveals for the first time that the development of fibrosis in CF is due to a TG2-driven epithelial to mesenchymal transition (EMT) via a mechanism involving the activation of the pro-fibrotic cytokine TGFβ1. Using a human ΔF508/W1282X CFTR CF mutant bronchial cell (IB3-1), its CFTR corrected “add-back” cell (C38) as well as a primary human bronchial epithelial cell (HBEC), elevated TG2 levels in the CFTR mutant IB3 cell were shown to activate latent TGFβ1 leading to increased levels found in the culture medium. This activation process was blocked by the presence of cell-permeable and impermeable TG2 inhibitors while inhibition of TGFβ1 receptors blocked TG2 expression. This demonstrates the direct link between TG2 and TGFβ1 in CF. The presence of active cell surface TG2 correlated with an increase in the expression of EMT markers, associated with the CF mutant cells, which could be blocked by the presence of TG2 inhibitors. This was mimicked using the “addback” C38 cell and the primary human bronchial epithelial cell, HBEC, where an increase in TG2 expression and activity in the presence of TGFβ1 concurred with a change in cell morphology and an elevation in EMT marker expression. Conversely, a knockdown of TG2 in the CF mutant IB3 cells illustrated that an inhibition of TG2 blocks the increase in EMT marker expression as well as causing an increase in TEER measurement. This together with an increase in the migration profile of the CF mutant IB3 cell against the “add-back” C38 cell suggests that TG2 drives a mesenchymal phenotype in CF. The involvement of TG2 activated TGFβ1 in CF was further demonstrated with an elevation/inhibition of p- SMAD 2 and 3 activation in the presence of TGFβ1/TG2 cell-permeable/impermeable inhibitors respectively. The use of a comparative airway cell model where bronchial epithelial cells were cultured at the air liquid interface (ALI) confirmed the observations in submerged culture depicting the robustness of the model and reiterated the importance of TG2 in CF. Using a CFTR corrector combined with TG2 inhibitors, this study showed that the correction and stabilisation of the ΔF508 CFTR mutation in the mutant cell forged an increase in matured CFTR copies trafficking to the apical surface by circumventing proteosomal degradation. Thus the results presented here suggests that TG2 expression is elevated in the CFTR mutant bronchial cell via a TGFβ1 driven positive feedback cycle whereby activation of latent TGFβ1 by TG2 leads in turn to an elevation in its own expression by TGFβ1. This vicious cycle then drives EMT in CF ultimately leading to lung remodelling and fibrosis. Importantly, TG2 inhibition blocks TGFβ1 activation leading to an inhibition of EMT and further blocks the emerging fibrosis, thus stabilizing and supporting the maturation, trafficking and conductance of CFTR channels at the apical surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adherence to treatment is often reported to be low in children with cystic fibrosis. Adherence in cystic fibrosis is an important research area and more research is needed to better understand family barriers to adherence in order for clinicians to provide appropriate intervention. The aim of this study was to evaluate adherence to enzyme supplements, vitamins and chest physiotherapy in children with cystic fibrosis and to determine if any modifiable risk factors are associated with adherence. Methods: A sample of 100 children (≤18 years) with cystic fibrosis (44 male; median [range] 10.1 [0.2-18.6] years) and their parents were recruited to the study from the Northern Ireland Paediatric Cystic Fibrosis Centre. Adherence to enzyme supplements, vitamins and chest physiotherapy was assessed using a multi-method approach including; Medication Adherence Report Scale, pharmacy prescription refill data and general practitioner prescription issue data. Beliefs about treatments were assessed using refined versions of the Beliefs about Medicines Questionnaire-specific. Parental depressive symptoms were assessed using the Center for Epidemiologic Studies Depression Scale. Results: Using the multi-method approach 72% of children were classified as low-adherers to enzyme supplements, 59% low-adherers to vitamins and 49% low-adherers to chest physiotherapy. Variations in adherence were observed between measurement methods, treatments and respondents. Parental necessity beliefs and child age were significant independent predictors of child adherence to enzyme supplements and chest physiotherapy, but parental depressive symptoms were not found to be predictive of adherence. Conclusions: Child age and parental beliefs about treatments should be taken into account by clinicians when addressing adherence at routine clinic appointments. Low adherence is more likely to occur in older children, whereas, better adherence to cystic fibrosis therapies is more likely in children whose parents strongly believe the treatments are necessary. The necessity of treatments should be reinforced regularly to both parents and children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the use of MRIA for quantitative characterisation of subretinal fibrosis secondary to nAMD. Methods: MRIA images of the posterior pole were acquired over 4 months from 20 eyes including those with inactive subretinal fibrosis and those being treated with ranibizumab for nAMD. Changes in morphology of the macula affected by nAMD were modelled and reflectance spectra at the MRIA acquisition wavelengths (507, 525, 552, 585, 596, 611 and 650nm) were computed using Monte Carlo simulation. Quantitative indicators of fibrosis were derived by matching image spectra to the model spectra of known morphological properties. Results: The model spectra were comparable to the image spectra, both normal and pathological. The key morphological changes that the model associated with nAMD were gliosis of the IS-OS junction, decrease in retinal blood and decrease in RPE melanin. However, these changes were not specific to fibrosis and none of the quantitative indicators showed a unique association with the degree of fibrosis. Moderate correlations were found with the clinical assessment, but not with the treatment program. Conclusion: MRIA can distinguish subretinal fibrosis from healthy tissue. The methods used show high sensitivity but low specificity, being unable to distinguish scarring from other abnormalities like atrophy. Quantification of scarring was not achieved with the wavelengths used due to the complex structural changes to retinal tissues in the process of nAMD. Further studies, incorporating other wavelengths, will establish whether MRIA has a role in the assessment of subretinal fibrosis in the context of retinal and choroidal pathology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mouse models of cystic fibrosis (CF) fail to truly represent the respiratory pathology. We have consequently developed human airways cell culture models to address this. The impact of cigarette smoke within the CF population is well documented, with exposure being known to worsen lung function. As nicotine is often perceived to be a less harmful component of tobacco smoke, this research aimed to identify its effects upon viability and inflammatory responses of CF (IB3-1) and CF phenotype corrected (C38) bronchial epithelial cells. Methods: IB3-1 and C38 cell lines were exposed to increasing concentrations of nicotine (0.55-75μM) for 24 hours. Cell viability was assessed via Cell Titre Blue and the inflammatory response with IL-6 and IL-8 ELISA. Results: CF cells were more sensitive; nicotine significantly (P<0.05) reduced cell viability at all concentrations tested, but failed to have a marked effect on C38 viability. Whilst nicotine induced anti-inflammatory effects in CF cells with a significant reduction in IL-6 and IL-8 release, it had no effect on chemokine release by C38 cells. Conclusion: CF cells may be more vulnerable to inhaled toxicants than non-CF cells. As mice lack a number of human nicotinic receptor subunits and fail to mimic the characteristic pathology of CF, these data emphasise the importance of employing relevant human cell lines to study a human-specific disease.