1000 resultados para RECEPTOR MAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypic studies of mice lacking metabotropic glutamate receptor subtype 7 (mGluR7) suggest that antagonists of this receptor may be promising for the treatment of central nervous system disorders such as anxiety and depression. Suzuki et al. (J Pharmacol Exp Ther 323: 147-156, 2007) recently reported the in vitro characterization of a novel mGluR7 antagonist called 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), which noncompetitively inhibited the activity of orthosteric and allosteric agonists at mGluR7. We describe that MMPIP acts as a noncompetitive antagonist in calcium mobilization assays in cells coexpressing mGluR7 and the promiscuous G protein G alpha(15). Assessment of the activity of a small library of MMPIP-derived compounds using this assay reveals that, despite similar potencies, compounds exhibit differences in negative co-operativity for agonist-mediated calcium mobilization. Examination of the inhibitory activity of MMPIP and analogs using endogenous G(i/o)-coupled assay readouts indicates that the pharmacology of these ligands seems to be context-dependent, and MMPIP exhibits differences in negative cooperativity in certain cellular backgrounds. Electrophysiological studies reveal that, in contrast to the orthosteric antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxyclycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), MMPIP is unable to block agonist-mediated responses at the Schaffer collateral-CA1 synapse, a location at which neurotransmission has been shown to be modulated by mGluR7 activity. Thus, MMPIP and related compounds differentially inhibit coupling of mGluR7 in different cellular backgrounds and may not antagonize the coupling of this receptor to native G(i/o) signaling pathways in all cellular contexts. The pharmacology of this compound represents a striking example of the potential for context-dependent blockade of receptor responses by negative allosteric modulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravenous (i.v.) administration of autoantigen effectively induces Ag-specific tolerance against experimental autoimmune encephalomyelitis (EAE). We and others have shown enhanced EAE severity in mice lacking IL-12 or its receptor, strongly suggesting an immunoregulatory effect of IL-12 signaling. To examine the role of IL-12 responsiveness in autoantigen-induced tolerance in EAE, we administered autoantigen i.v. in two distinct treatment regimes to wildtype and IL-12Rβ2(-/-) mice, immunized to develop EAE. Administration at the induction phase suppressed EAE in wildtype and IL-12Rβ2(-/-) mice however the effect was somewhat less potent in the absence of IL-12Rβ2. Expression of pro-inflammatory cytokines such as IFN-γ, IL-17 and IL-2, was inhibited in wild-type tolerized mice but less so in IL-12Rβ2(-/-) mice. I.v. antigen was also effective in suppressing disease in both genotypes when given during the clinical phase of disease with similar CNS inflammation, demyelination and peripheral inflammatory cytokine profiles observed in both genotypes. There was however a mild impact of a lack of IL-12 signaling on Treg induction during tolerance induction compared to WT mice in this treatment regime. These findings show that the enhanced severity of EAE that occurs in the absence of IL-12 signaling can be effectively overcome by i.v. autoantigen, indicating that this therapeutic effect is not primarily mediated by IL-12 and that i.v. tolerance could be a powerful approach in suppressing severe and aggressive MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review will discuss evidence for the role of the erythropoietin (Epo) receptor in the development of erythrocytosis and other hematological disorders, The possible causative role of mutations of other genes in the pathogenesis of idiopathic erythrocytosis will be considered, Polycythemia vera (PV) is a myeloproliferative disorder that is caused by an undefined stem cell abnormality, characterized by a significant erythrocytosis, leukocytosis, and thrombocytosis. However, erythrocytosis may arise from apparent (or relative) polycythemia in which the hematocrit is raised due to a low plasma volume. In such cases the red cell mass is normal. A group of disorders with increased red cell mass caused by stimulation of erythrocyte production is known as secondary polycythemia, Investigation of such patients may reveal a congenital abnormality such as high affinity hemoglobin or an acquired abnormality caused, for example, by smoking, renal Vascular impairment, or an Epo-producing tumor. Even after thorough examination there remains a cohort of patients for whom no definite cause for the erythrocytosis can be established, A careful clinical history may reveal whether this idiopathic erythrocytosis is likely to be congenital and/or familial, in which case the term

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial erythrocytosis, associated with high haemoglobin levels and low serum erythropoietin (Epo), has been shown to co-segregate with a sequence repeat polymorphism at the 5' region of the erythropoietin receptor (EpoR) in a large Finnish family. We have investigated the cause of erythrocytosis in an English boy. Sequencing of the cytoplasmic region of the EpoR detected a de novo transition mutation of G to A at nucleotide 6002. This mutation resulted in the formation of a stop codon at amino acid 439 with the loss of 70 amino acids from the carboxy terminus. The mutation (G6002A) has arisen independently in a Finnish family and de novo in this English boy. Patients with unexplained erythrocytosis and low serum Epo levels should be investigated for EpoR mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To characterize the importance of cellular Fas-associated death domain (FADD)–like interleukin 1ß-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase-8 (FLICE)–promoted apoptosis, in modulating the response of prostate cancer cells to androgen receptor (AR)–targeted therapy.

Experimental Design: c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacologic interventions.

Results: c-FLIP expression was increased in high-grade prostatic intraepithelial neoplasia and prostate cancer tissue relative to normal prostate epithelium (P < 0.001). Maximal c-FLIP expression was detected in castrate-resistant prostate cancer (CRPC; P < 0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage, and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also downregulated c-FLIP expression, induced caspase-8- and caspase-3/7–mediated apoptosis, and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance.

Conclusion: c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of prostate cancer cells. A combination of HDACi with androgen deprivation therapy may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP, however, may be relevant to enhance the response of existing and novel therapeutics in CRPC. Clin Cancer Res; 18(14); 3822–33.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we explored the potential role of the complement derived anaphylatoxin C5a and the expression of its receptor in mouse brain. Using in situ hybridization, we found that C5a receptor messenger RNA is expressed in mouse brain. In response to intraventricular kainic acid injection, there was marked increase in the C5a receptor messenger RNA expression, particularly in hippocampal formation and cerebral cortex. C5a ligand-binding autoradiography confirmed the functional expression and elevation of the C5a receptor post-lesioning. The expression of Cia receptor messenger RNA in brain was confirmed by northern blot hybridization of total RNA from neuronal and glial cells in vitiro. Based on these findings we explored the role of C5a in mechanisms of signal transduction in brain cells. Treatment of primary cultures of mouse astrocytes with human recombinant C5a resulted in the activation of mitogen-activated extracellular signal-regulated protein kinase. This response appeared to be mediated by the C5a receptor since astrocyte cultures derived from C5a receptor knockout mice were not responsive to the treatment. Understanding the regulation of C5a receptor in brain and mechanisms by which pro-inflammatory C5a modulates specific signal transduction pathways in brain cells is crucial to studies of inflammatory mechanisms in neurodegeneration. (C) 1998 IBRO. Published by Elsevier Science Ltd.