911 resultados para REACTIVE OXYGEN SPECIES
Resumo:
Photodynamic Therapy (PDT) is a technique used to treat several types of lesions, such as cancer, microbial control, and esthetic dentistry cases. The performance of PDT involves the use of a photosensitizer (PS), which mainly will be located in cancer cells and is irradiated with visible light. This process, when it occurs in the presence of oxygen triggers the formation of reactive oxygen species that are cytotoxic to cells. These species cause cell death and subsequent tumor necrosis. The use of white light as a light source for multispectral Photodynamic Therapy and its consequences to the photodynamic effect is not yet completely established, and therefore there is interest in studying the parameters involved for analyzing the best conditions for applying treatment. The wavelength is crucial to improve the therapeutic effect, since both the optical properties of the biological tissue as the PS depend on these parameters. For FS studied in this work (Photogem®) are most often used wavelengths in the red region, due to their larger penetration depth in biological tissue. Thus, the light source becomes a fundamental aspect, their choice depends on the specific application and is based on the tumor location, light dose to be delivered and FS chosen. Despite all the advantages presented by lasers, the fact of having an emission spectrum essentially monochrome makes only one possible transition possible for the absorption of FS is used. Therefore, more extensive light sources such as light emitting diodes (LED), could be better used in some cases the laser, with the additional advantage of a reduced cost. Therefore, the choice of the white LED comes from an emission spectrum that still wider LED colors defined by allowing greater use of the several absorption bands and with varying depths of operation, according to the wavelength... (Complete abstract click electronic access below)
Resumo:
Helicobacter pylori (H. pylori) is a common gastric pathogen that has infected more than 50% of the population of the world and it has been associated with chronic gastritis, gastric ulcers, duodenal ulcer, and gastric cancer. Although, almost all infected people develop gastritis, there is a variety of clinical outcomes, and only a minority (<1%) of infected individuals develop gastric cancer. There are evidences which suggest that the chronic inflammatory reaction caused by the bacterial infection may be involved in the production of reactive oxygen species or reactive nitrogen species. It may lead to DNA damage, which together with the cellular response could lead to gene mutations, chromosomal aberrations characterizing genomic instability that may represent the early step in gastric carcinogenesis. The extent and severity of gastric mucosal inflammation, as well as the clinical outcome of the infection, depend on a number of factors, including the host genetic susceptibility such SNP T3801 CYP1A1, immune response, age at which the infection was acquired, environmental factors, especially dietary and bacterial virulence factors. Due to the risk of developing gastric cancer in humans infected by H. pylori, we used the Comet Assay to investigate the influence of the SNP T3801C CYP1A1 on levels of oxidative DNA damage in gastric epithelial cells. The study was conducted with biopsies from the gastric antrum and corpus of 103 H. pylori-infected patients and 24 uninfected control patients. Genotype of SNP T3801C CYP1A1 was determined by PCR-RFLP and DNA damage levels were measured in gastric mucosal cells from antrum and corpus by the Comet assay. Levels of DNA damage in gastric mucosa cells from antrum and corpus of H. pylori-infected patients with mild, moderate, severe gastritis, and gastric cancer were significantly higher compared to uninfected normal mucosa cells. However, levels... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Photodynamic therapy (PDT) is a promising method for localized and specific inactivation of fungi and bacteria. A nontoxic light-sensitive compound is taken up by cells, which are then exposed selectively to light, which activates toxicity of the compound. We investigated the potential of sublethal PDT using light-sensitive curcumin (CUR) in combination with blue (455 nm) light to promote reactive oxygen species (ROS) formation in the form of singlet oxygen and DNA damage of Candida albicans. Surprisingly, CUR-mediated PDT but also light alone caused significantly longer comet tails, an indication of DNA damage of C. albicans when compared with the negative control. The intracellular ROS production was also significantly higher for the group treated only with light. However, PDT compared to blue light alone significantly slowed DNA repair. Comet tails decreased during 30 min visualized as a 90% reduction in length in the absence of light for cells treated with light alone, while comet tails of cells treated with PDT only diminished in size about 45%. These results indicate that complex mechanisms may result in PDT in a way that should be considered when choosing the photosensitive compound and other aspects of the treatment design.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO) is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP) in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA) and proline and reduced pirogalol peroxidase (PG-POD) activity, but did not affect the activity of superoxide dismutase (SOD). When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)