982 resultados para Quantum Chromodynamics (QCD),


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a [ud](2)(s) over bar current, in the finite-density QCD sum rule approach, to investigate the scalar and vector self-energies of the recently observed pentaquark state Theta(+)(1540), propagating in nuclear matter. We find that, opposite to what was obtained for the nucleon, the vector self-energy is negative, and the scalar self-energy is positive. There is a substantial cancellation between them resulting in an attractive net self-energy of the same order as in the nucleon case. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that there is a four-parameter family of point interactions in one-dimensional quantum mechanics. We point out that, as far as physics is concerned, it is sufficient to use three of the four parameters. The fourth parameter is redundant. The apparent violation of time-reversal invariance in the presence of the fourth parameter is an artifact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute the survival probability {vertical bar S vertical bar(2)} of large rapidity gaps (LRG) in a QCD based eikonal model with a dynamical gluon mass, where this dynamical infrared mass scale represents the onset of nonperturbative contributions to the diffractive hadron-hadron scattering. Since rapidity gaps can occur in the case of Higgs boson production via fusion of electroweak bosons, we focus on WW -> H fusion processes and show that the resulting {vertical bar S vertical bar(2)} decreases with the increase of the energy of the incoming hadrons; in line with the available experimental data for LRG. We obtain {vertical bar S vertical bar(2)} = 27.6 +/- 7.8% (18.2 +/- 17.0%) at Tevatron (CERN-LHC) energy for a dynamical gluon mass m(g) = 400 MeV. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The QCD Sum Rules have been used to evaluate the form factor in the vertex KK*pi. The method of QCD Sum Rules is based on the duality principle in which it is assumed that the hadrons can simultaneously be described in two levels: quarks and hadrons. This work showed that the, axial current, used to describe the meson K is not appropriated to study the form factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a framework to renormalize the nonrelativistic quantum mechanics with arbitrary singular interactions. The scattering equation is written to have one or more subtraction in the kernel at a given energy scale. The scattering amplitude is the solution of a nth order derivative equation in respect to the renormalization scale, which is the nonrelativistic counterpart of the Callan-Symanzik formalism, Scaled running potentials for the subtracted equations keep the physics invariant fur a sliding subtraction point. An example of a singular potential, that requires more than one subtraction to renormalize the theory is shown. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-integrable phase-factor global approach to gravitation is developed by using the similarity of teleparallel gravity to electromagnetism. The phase shifts of both the COW and the gravitational Aharonov-Bohm effects are obtained. It is then shown, by considering a simple slit experiment, that in the classical limit the global approach yields the same result as the gravitational Lorentz force equation of teleparallel gravity. It represents, therefore, the quantum mechanical version of the classical description provided by the gravitational Lorentz force equation. As teleparallel gravity can be formulated independently of the equivalence principle, it will consequently require no generalization of this principle at the quantum level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonperturbative Wilson coefficients of the operator product expansion (OPE) for the spin-0 glueball correlators are derived and analyzed. A systematic treatment of the direct instanton contributions is given, based on a realistic instanton size distribution and renormalization at the operator scale. In the pseudoscalar channel, topological charge screening is identified as an additional source of (semi-) hard nonperturbative physics. The screening contributions are shown to be vital for consistency with the anomalous axial Ward identity, and previously encountered pathologies (positivity violations and the disappearance of the 0(-+) glueball signal) are traced to their neglect. on the basis of the extended OPE, a comprehensive quantitative analysis of eight Borel-moment sum rules in both spin-0 glueball channels is then performed. The nonperturbative OPE coefficients turn out to be indispensable for consistent sum rules and for their reconciliation with the underlying low-energy theorems. The topological short-distance physics strongly affects the sum rule results and reveals a rather diverse pattern of glueball properties. New predictions for the spin-0 glueball masses and decay constants and an estimate of the scalar glueball width are given, and several implications for glueball structure and experimental glueball searches are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We comment on the recent results [Phys. Rev. B 70, 235314 (2004)] showing the dispersion relations of single-particle and collective excitations in quantum wires in the presence of the Rashba spin-orbit interaction (SOI). We claim that those calculations performed in the absence of SOI, and used as a strong reference to the interacting case, are unlikely to be correct. We show the correct omega-q plane of the system in the absence of Rashba SOI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the gamma p photoproduction and the hadronic gamma gamma total cross sections by means of a QCD eikonal model with a dynamical infrared mass scale. In this model, where the dynamical gluon mass is the natural regulator for the tree level gluon-gluon scattering, the gamma p and gamma gamma total cross sections are derived from the pp and (p) over barp forward scattering amplitudes assuming vector meson dominance and the additive quark model. We show that the validity of the cross section factorization relation sigma(pp)/sigma(gamma p)=sigma(gamma p)/sigma(gamma gamma) is fulfilled depending on the Monte Carlo model used to unfold the hadronic gamma gamma cross section data, and we discuss in detail the case of sigma(gamma gamma -> hadrons) data with W-gamma gamma> 10 GeV unfolded by the Monte Carlo generators PYTHIA and PHOJET. The data seems to favor a mild dependence with the energy of the probability (P-had) that the photon interacts as a hadron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss several key problems of conventional QCD glueball sum rules in the spin-0 channels and show how they are overcome by nonperturbative Wilson coefficients. The nonperturbative contributions originate from direct instantons and, in the pseudoscalar channel, additionally from topological charge screening. The treatment of the direct-instanton sector is based on realistic instanton size distributions and renormalization at the operator scale. The resulting predictions for spin-0 glueball properties as well as their implications for experimental glueball searches are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quaternionic version of Quantum Mechanics is constructed using the Schwinger's formulation based on measurements and a Variational Principle. Commutation relations and evolution equations are provided, and the results are compared with other formulations.