942 resultados para Quantities and measurements


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA) fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20--50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NO_x and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 30--160%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA) components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of pollution were observed far downwind of continental Europe, with OA and ammonium nitrate being the major constituents of the sub-micron aerosol burden. Such anthropogenically perturbed air masses can significantly perturb regional climate far downwind of major source regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The difference between cirrus emissivities at 8 and 11 μm is sensitive to the mean effective ice crystal size of the cirrus cloud, De. By using single scattering properties of ice crystals shaped as planar polycrystals, diameters of up to about 70 μm can be retrieved, instead of up to 45 μm assuming spheres or hexagonal columns. The method described in this article is used for a global determination of mean effective ice crystal sizes of cirrus clouds from TOVS satellite observations. A sensitivity study of the De retrieval to uncertainties in hypotheses on ice crystal shape, size distributions, and temperature profiles, as well as in vertical and horizontal cloud heterogeneities shows that uncertainties can be as large as 30%. However, the TOVS data set is one of few data sets which provides global and long-term coverage. Having analyzed the years 1987–1991, it was found that measured effective ice crystal diameters De are stable from year to year. For 1990 a global median De of 53.5 μm was determined. Averages distinguishing ocean/land, season, and latitude lie between 23 μm in winter over Northern Hemisphere midlatitude land and 64 μm in the tropics. In general, larger Des are found in regions with higher atmospheric water vapor and for cirrus with a smaller effective emissivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the largest uncertainties in quantifying the impact of aviation on climate concerns the formation and spreading of persistent contrails. The inclusion of a cloud scheme that allows for ice supersaturation into the integrated forecast system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) can be a useful tool to help reduce these uncertainties. This study evaluates the quality of the ECMWF forecasts with respect to ice super saturation in the upper troposphere by comparing them to visual observations of persistent contrails and radiosonde measurements of ice supersaturation over England. The performance of 1- to 3-day forecasts is compared including also the vertical accuracy of the supersaturation forecasts. It is found that the operational forecasts from the ECMWF are able to predict cold ice supersaturated regions very well. For the best cases Peirce skill scores of 0.7 are obtained, with hit rates at times exceeding 80% and false-alarm rates below 20%. Results are very similar for comparisons with visual observations and radiosonde measurements, the latter providing the better statistical significance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intercontinental Transport of Ozone and Precursors (ITOP) (part of International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)) was an intense research effort to measure long-range transport of pollution across the North Atlantic and its impact on O3 production. During the aircraft campaign plumes were encountered containing large concentrations of CO plus other tracers and aerosols from forest fires in Alaska and Canada. A chemical transport model, p-TOMCAT, and new biomass burning emissions inventories are used to study the emissions long-range transport and their impact on the troposphere O3 budget. The fire plume structure is modeled well over long distances until it encounters convection over Europe. The CO values within the simulated plumes closely match aircraft measurements near North America and over the Atlantic and have good agreement with MOPITT CO data. O3 and NOx values were initially too great in the model plumes. However, by including additional vertical mixing of O3 above the fires, and using a lower NO2/CO emission ratio (0.008) for boreal fires, O3 concentrations are reduced closer to aircraft measurements, with NO2 closer to SCIAMACHY data. Too little PAN is produced within the simulated plumes, and our VOC scheme's simplicity may be another reason for O3 and NOx model-data discrepancies. In the p-TOMCAT simulations the fire emissions lead to increased tropospheric O3 over North America, the north Atlantic and western Europe from photochemical production and transport. The increased O3 over the Northern Hemisphere in the simulations reaches a peak in July 2004 in the range 2.0 to 6.2 Tg over a baseline of about 150 Tg.