994 resultados para QUANTUM COMPUTATION
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Resumo:
A variety of neural signals have been measured as correlates to consciousness. In particular, late current sinks in layer 1, distributed activity across the cortex, and feedback processing have all been implicated. What are the physiological underpinnings of these signals? What computational role do they play in the brain? Why do they correlate to consciousness? This thesis begins to answer these questions by focusing on the pyramidal neuron. As the primary communicator of long-range feedforward and feedback signals in the cortex, the pyramidal neuron is set up to play an important role in establishing distributed representations. Additionally, the dendritic extent, reaching layer 1, is well situated to receive feedback inputs and contribute to current sinks in the upper layers. An investigation of pyramidal neuron physiology is therefore necessary to understand how the brain creates, and potentially uses, the neural correlates of consciousness. An important part of this thesis will be in establishing the computational role that dendritic physiology plays. In order to do this, a combined experimental and modeling approach is used.
This thesis beings with single-cell experiments in layer 5 and layer 2/3 pyramidal neurons. In both cases, dendritic nonlinearities are characterized and found to be integral regulators of neural output. Particular attention is paid to calcium spikes and NMDA spikes, which both exist in the apical dendrites, considerable distances from the spike initiation zone. These experiments are then used to create detailed multicompartmental models. These models are used to test hypothesis regarding spatial distribution of membrane channels, to quantify the effects of certain experimental manipulations, and to establish the computational properties of the single cell. We find that the pyramidal neuron physiology can carry out a coincidence detection mechanism. Further abstraction of these models reveals potential mechanisms for spike time control, frequency modulation, and tuning. Finally, a set of experiments are carried out to establish the effect of long-range feedback inputs onto the pyramidal neuron. A final discussion then explores a potential way in which the physiology of pyramidal neurons can establish distributed representations, and contribute to consciousness.
Resumo:
In the field of mechanics, it is a long standing goal to measure quantum behavior in ever larger and more massive objects. It may now seem like an obvious conclusion, but until recently it was not clear whether a macroscopic mechanical resonator -- built up from nearly 1013 atoms -- could be fully described as an ideal quantum harmonic oscillator. With recent advances in the fields of opto- and electro-mechanics, such systems offer a unique advantage in probing the quantum noise properties of macroscopic electrical and mechanical devices, properties that ultimately stem from Heisenberg's uncertainty relations. Given the rapid progress in device capabilities, landmark results of quantum optics are now being extended into the regime of macroscopic mechanics.
The purpose of this dissertation is to describe three experiments -- motional sideband asymmetry, back-action evasion (BAE) detection, and mechanical squeezing -- that are directly related to the topic of measuring quantum noise with mechanical detection. These measurements all share three pertinent features: they explore quantum noise properties in a macroscopic electromechanical device driven by a minimum of two microwave drive tones, hence the title of this work: "Quantum electromechanics with two tone drive".
In the following, we will first introduce a quantum input-output framework that we use to model the electromechanical interaction and capture subtleties related to interpreting different microwave noise detection techniques. Next, we will discuss the fabrication and measurement details that we use to cool and probe these devices with coherent and incoherent microwave drive signals. Having developed our tools for signal modeling and detection, we explore the three-wave mixing interaction between the microwave and mechanical modes, whereby mechanical motion generates motional sidebands corresponding to up-down frequency conversions of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We will discuss the measurement and interpretation of this asymmetric motional noise in a electromechanical device cooled near the ground state of motion.
Next, we consider an overlapped two tone pump configuration that produces a time-modulated electromechanical interaction. By careful control of this drive field, we report a quantum non-demolition (QND) measurement of a single motional quadrature. Incorporating a second pair of drive tones, we directly measure the measurement back-action associated with both classical and quantum noise of the microwave cavity. Lastly, we slightly modify our drive scheme to generate quantum squeezing in a macroscopic mechanical resonator. Here, we will focus on data analysis techniques that we use to estimate the quadrature occupations. We incorporate Bayesian spectrum fitting and parameter estimation that serve as powerful tools for incorporating many known sources of measurement and fit error that are unavoidable in such work.
Resumo:
The Everett interpretation of quantum mechanics is an increasingly popular alternative to the traditional Copenhagen interpretation, but there are a few major issues that prevent the widespread adoption. One of these issues is the origin of probabilities in the Everett interpretation, which this thesis will attempt to survey. The most successful resolution of the probability problem thus far is the decision-theoretic program, which attempts to frame probabilities as outcomes of rational decision making. This marks a departure from orthodox interpretations of probabilities in the physical sciences, where probabilities are thought to be objective, stemming from symmetry considerations. This thesis will attempt to offer evaluations on the decision-theoretic program.
Resumo:
The field of plasmonics exploits the unique optical properties of metallic nanostructures to concentrate and manipulate light at subwavelength length scales. Metallic nanostructures get their unique properties from their ability to support surface plasmons– coherent wave-like oscillations of the free electrons at the interface between a conductive and dielectric medium. Recent advancements in the ability to fabricate metallic nanostructures with subwavelength length scales have created new possibilities in technology and research in a broad range of applications.
In the first part of this thesis, we present two investigations of the relationship between the charge state and optical state of plasmonic metal nanoparticles. Using experimental bias-dependent extinction measurements, we derive a potential- dependent dielectric function for Au nanoparticles that accounts for changes in the physical properties due to an applied bias that contribute to the optical extinction. We also present theory and experiment for the reverse effect– the manipulation of the carrier density of Au nanoparticles via controlled optical excitation. This plasmoelectric effect takes advantage of the strong resonant properties of plasmonic materials and the relationship between charge state and optical properties to eluci- date a new avenue for conversion of optical power to electrical potential.
The second topic of this thesis is the non-radiative decay of plasmons to a hot-carrier distribution, and the distribution’s subsequent relaxation. We present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. We also preform ab initio calculations of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We extend these first-principle methods to calculate the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions. Finally, we combine these first-principles calculations of carrier dynamics and optical response to produce a complete theoretical description of ultrafast pump-probe measurements, free of any fitting parameters that are typical in previous analyses.
Resumo:
We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.
Resumo:
65 p.
Resumo:
Quantum well states of Ag films grown on stepped Au(111) surfaces are shown to undergo lateral scattering, in analogy with surface states of vicinal Ag(111). Applying angle resolved photoemission spectroscopy we observe quantum well bands with zone-folding and gap openings driven by surface/interface step lattice scattering. Experiments performed on a curved Au(111) substrate allow us to determine a subtle terrace-size effect, i.e., a fine step-density-dependent upward shift of quantum well bands. This energy shift is explained as mainly due to the periodically stepped crystal potential offset at the interface side of the film. Finally, the surface state of the stepped Ag film is analyzed with both photoemission and scanning tunneling microscopy. We observe that the stepped film interface also affects the surface state energy, which exhibits a larger terrace-size effect compared to surface states of bulk vicinal Ag(111) crystals
Resumo:
124 p.
Resumo:
In this comment, problems associated with an oversimplified FDTD based model used for trapping force calculation in recent papers "Computation of the optical trapping force using an FDTD based technique" [Opt. Express 13, 3707 (2005)], and "Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping" [Opt. Express 12, 2220 (2004)] are discussed. A more rigorous model using in Poynting vector is also presented.
Resumo:
120 p.