857 resultados para Pulmonary Disease (Specialty)
Resumo:
Background and significance: Older adults with chronic diseases are at increasing risk of hospital admission and readmission. Approximately 75% of adults have at least one chronic condition, and the odds of developing a chronic condition increases with age. Chronic diseases consume about 70% of the total Australian health expenditure, and about 59% of hospital events for chronic conditions are potentially preventable. These figures have brought to light the importance of the management of chronic disease among the growing older population. Many studies have endeavoured to develop effective chronic disease management programs by applying social cognitive theory. However, limited studies have focused on chronic disease self-management in older adults at high risk of hospital readmission. Moreover, although the majority of studies have covered wide and valuable outcome measures, there is scant evidence on examining the fundamental health outcomes such as nutritional status, functional status and health-related quality of life. Aim: The aim of this research was to test social cognitive theory in relation to self-efficacy in managing chronic disease and three health outcomes, namely nutritional status, functional status, and health-related quality of life, in older adults at high risk of hospital readmission. Methods: A cross-sectional study design was employed for this research. Three studies were undertaken. Study One examined the nutritional status and validation of a nutritional screening tool; Study Two explored the relationships between participants. characteristics, self-efficacy beliefs, and health outcomes based on the study.s hypothesized model; Study Three tested a theoretical model based on social cognitive theory, which examines potential mechanisms of the mediation effects of social support and self-efficacy beliefs. One hundred and fifty-seven patients aged 65 years and older with a medical admission and at least one risk factor for readmission were recruited. Data were collected from medical records on demographics, medical history, and from self-report questionnaires. The nutrition data were collected by two registered nurses. For Study One, a contingency table and the kappa statistic was used to determine the validity of the Malnutrition Screening Tool. In Study Two, standard multiple regression, hierarchical multiple regression and logistic regression were undertaken to determine the significant influential predictors for the three health outcome measures. For Study Three, a structural equation modelling approach was taken to test the hypothesized self-efficacy model. Results: The findings of Study One suggested that a high prevalence of malnutrition continues to be a concern in older adults as the prevalence of malnutrition was 20.6% according to the Subjective Global Assessment. Additionally, the findings confirmed that the Malnutrition Screening Tool is a valid nutritional screening tool for hospitalized older adults at risk of readmission when compared to the Subjective Global Assessment with high sensitivity (94%), and specificity (89%) and substantial agreement between these two methods (k = .74, p < .001; 95% CI .62-.86). Analysis data for Study Two found that depressive symptoms and perceived social support were the two strongest influential factors for self-efficacy in managing chronic disease in a hierarchical multiple regression. Results of multivariable regression models suggested advancing age, depressive symptoms and less tangible support were three important predictors for malnutrition. In terms of functional status, a standard regression model found that social support was the strongest predictor for the Instrumental Activities of Daily Living, followed by self-efficacy in managing chronic disease. The results of standard multiple regression revealed that the number of hospital readmission risk factors adversely affected the physical component score, while depressive symptoms and self-efficacy beliefs were two significant predictors for the mental component score. In Study Three, the results of the structural equation modelling found that self-efficacy partially mediated the effect of health characteristics and depression on health-related quality of life. The health characteristics had strong direct effects on functional status and body mass index. The results also indicated that social support partially mediated the relationship between health characteristics and functional status. With regard to the joint effects of social support and self-efficacy, social support fully mediated the effect of health characteristics on self-efficacy, and self-efficacy partially mediated the effect of social support on functional status and health-related quality of life. The results also demonstrated that the models fitted the data well with relative high variance explained by the models, implying the hypothesized constructs under discussion were highly relevant, and hence the application for social cognitive theory in this context was supported. Conclusion: This thesis highlights the applicability of social cognitive theory on chronic disease self-management in older adults at risk of hospital readmission. Further studies are recommended to validate and continue to extend the development of social cognitive theory on chronic disease self-management in older adults to improve their nutritional and functional status, and health-related quality of life.
Resumo:
This study aimed to gauge the presence of markers of chronic disease, as a basis for food and nutrition policy in correctional facilities. One hundred and twenty offenders, recruited from a Queensland Correctional Centre, provided informed consent and completed both dietary interviews and physical measurements. Mean age of the sample was 35.5 ± 12 years (range = 19–77 yrs); mean age of the total population (n = 945) was 32.8 ± 10 years (range = 19–80 yrs). Seventy-nine participants also provided fasting blood samples. The mean body mass index (BMI) was 27 ± 3.5 kg/m2; 72% having a BMI > 25 kg/m2. Thirty-three percent were classified overweight or obese using waist circumference (mean = 92 ± 10 cm). Mean blood pressure measurement was systolic = 130 ± 14 mmHg and diastolic = 73 ± 10 mmHg. Twenty-four percent were classified as hypertensive of whom three were on antihypertensive medication. Eighteen percent had elevated triglycerides, and 40% unfavourable total cholesterol to HDL ratios. Homeostatic Model Assessment (HOMA scores) were calculated from glucose and insulin. Four participants were insulin resistant, two of whom had known diabetes. Metabolic syndrome, based on waist circumference (adjusted for ethnicity), blood lipids, blood pressure and plasma glucose indicated that 25% (n = 20) were classified with metabolic syndrome. Eighty-four percent (n = 120) reported some physical activity each day, with 51 percent participating ≥two times daily. Fifty-four percent reported smoking with an additional 20% having smoked in the past. Findings suggest that waist circumference rather than weight and BMI only should be used in this group to determine weight status. The data suggest that markers of chronic disease are present and that food and nutrition policy must reflect this. Further analysis is being completed to determine relevant policy initiatives.
Resumo:
Objective To identify the spatial and temporal clusters of Barmah Forest virus (BFV) disease in Queensland in Australia, using geographical information systems (GIS) and spatial scan statistic (SaTScan). Methods We obtained BFV disease cases, population and statistical local areas boundary data from Queensland Health and Australian Bureau of Statistics respectively during 1992-2008 for Queensland. A retrospective Poisson-based analysis using SaTScan software and method was conducted in order to identify both purely spatial and space-time BFV disease high-rate clusters. A spatial cluster size of a proportion of the population and a 200km circle radius and varying time windows from 1 month to 12 months were chosen (for the space-time analysis). Results The spatial scan statistic detected a most likely significant purely spatial cluster (including 23 SLAs) and a most likely significant space-time cluster (including 24 SLAs) in approximately the same location. Significant secondary clusters were also identified from both the analyses in several locations. Conclusions This study provides evidence of the existence of statistically significant BFV disease clusters in Queensland, Australia. The study also demonstrated the relevance and applicability of SaTScan in analysing on-going surveillance data to identify clusters to facilitate the development of effective BFV disease prevention and control strategies in Queensland, Australia.
Resumo:
Barmah Forest Virus (BFV) disease is the most rapidly emerging mosquito-borne disease in Australia. BFV transmission depends on factors such as climate, virus, vector and the human population. However, the impact of climatic and social factors on BFV remains to be determined. This paper provided an overview of current research and discusses the future research directions on the BFV transmission. These research findings could be regarded as an impetus towards BFV prevention and control strategies.
Resumo:
Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.