950 resultados para Protein Expression Screening
Resumo:
Expression of water soluble proteins of fresh pork Longissimus thoracis from 4 pure breed pigs (Duroc, Large White, Landrace, and Piétrain) was studied to identify candidate protein markers for meat quality. Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) was used to obtain the soluble protein profiles of Longissimus thoracis muscles. The pure breeds showed differences among the studied meat quality traits (pHu, drip loss, androstenone, marbling, intramuscular fat, texture, and moisture), but no significant differences were detected in sensory analysis. Associations between protein peaks obtained with SELDI-TOF-MS and meat quality traits, mainly water holding capacity, texture and skatole were observed. Of these peaks, a total of 10 peaks from CM10 array and 6 peaks from Q10 array were candidate soluble protein markers for pork loin quality. The developed models explained a limited proportion of the variability, however they point out interesting relationships between protein expression and meat quality
Resumo:
Myeloid cell leukemia-1 (MCL1) is an anti-apoptotic member of the BCL2 family that is deregulated in various solid and hematological malignancies. However, its role in the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL) is unclear. We analyzed gene expression profiling data from 350 DLBCL patient samples and detected that activated B-cell-like (ABC) DLBCLs express MCL1 at significantly higher levels compared with germinal center B-cell-like DLBCL patient samples (P=2.7 × 10(-10)). Immunohistochemistry confirmed high MCL1 protein expression predominantly in ABC DLBCL in an independent patient cohort (n=249; P=0.001). To elucidate molecular mechanisms leading to aberrant MCL1 expression, we analyzed array comparative genomic hybridization data of 203 DLBCL samples and identified recurrent chromosomal gains/amplifications of the MCL1 locus that occurred in 26% of ABC DLBCLs. In addition, aberrant STAT3 signaling contributed to high MCL1 expression in this subtype. Knockdown of MCL1 as well as treatment with the BH3-mimetic obatoclax induced apoptotic cell death in MCL1-positive DLBCL cell lines. In summary, MCL1 is deregulated in a significant fraction of ABC DLBCLs and contributes to therapy resistance. These data suggest that specific inhibition of MCL1 might be utilized therapeutically in a subset of DLBCLs.
Resumo:
We have investigated the effect of extracellular proteases on the amiloride-sensitive Na+ current (INa) in Xenopus oocytes expressing the three subunits alpha, beta, and gamma of the rat or Xenopus epithelial Na+ channel (ENaC). Low concentrations of trypsin (2 microg/ml) induced a large increase of INa within a few minutes, an effect that was fully prevented by soybean trypsin inhibitor, but not by amiloride. A similar effect was observed with chymotrypsin, but not with kallikrein. The trypsin-induced increase of INa was observed with Xenopus and rat ENaC, and was very large (approximately 20-fold) with the channel obtained by coexpression of the alpha subunit of Xenopus ENaC with the beta and gamma subunits of rat ENaC. The effect of trypsin was selective for ENaC, as shown by the absence of effect on the current due to expression of the K+ channel ROMK2. The effect of trypsin was not prevented by intracellular injection of EGTA nor by pretreatment with GTP-gammaS, suggesting that this effect was not mediated by G proteins. Measurement of the channel protein expression at the oocyte surface by antibody binding to a FLAG epitope showed that the effect of trypsin was not accompanied by an increase in the channel protein density, indicating that proteolysis modified the activity of the channel present at the oocyte surface rather than the cell surface expression. At the single channel level, in the cell-attached mode, more active channels were observed in the patch when trypsin was present in the pipette, while no change in channel activity could be detected when trypsin was added to the bath solution around the patch pipette. We conclude that extracellular proteases are able to increase the open probability of the epithelial sodium channel by an effect that does not occur through activation of a G protein-coupled receptor, but rather through proteolysis of a protein that is either a constitutive part of the channel itself or closely associated with it.
Resumo:
PURPOSE: The immunomodulatory properties of Toll-like receptors (TLR) agonists have inspired their use as experimental adjuvants for vaccination of cancer patients. However, it is now well recognized that TLR expression is not restricted to immune cells but can also be found in many cell types, including those giving rise to tumors. It is therefore mandatory to explore the potential effects of TLR triggering directly on tumor cells. EXPERIMENTAL DESIGN: In the present work, we have investigated TLR3 protein expression in melanoma cell lines derived from patients, and analyzed the effects of TLR3 agonists on tumor cell survival. Moreover, we used RNA interference to stably knock down TLR3 expression and study the involvement of this receptor in dsRNA-induced effects on melanoma cells viability. RESULTS: Human melanoma cells can express functional TLR3 protein. Interestingly, the engagement of the receptor by TLR3 agonists can directly inhibit cell proliferation and induce tumor cell death when combined to treatment with either type I IFN or protein synthesis inhibitors. These effects were shown by RNA interference to be largely dependent on TLR3. Moreover, TLR3-mediated cell death involves the activation of caspases and engages both extrinsic and intrinsic apoptotic pathways. CONCLUSION: TLR3 protein can be expressed in human melanoma cells, where it can deliver proapoptotic and antiproliferative signaling. Altogether, these results suggest that TLR3 agonists represent very promising adjuvants for cancer vaccines not only based on their well-described immunostimulatory properties, but also due to their newly identified cytostatic and cytotoxic effects directly on tumor cells.
Resumo:
Human low-grade astrocytomas frequently recur and progress to states of higher malignancy. During tumor progression TP53 alterations are among the first genetic changes, while derangement of the p16/p14ARF/RB-1 system occurs later. To probe the pathogenetic significance of TP53 and RB-1 alterations, we introduced a v-src transgene driven by glial fibrillary acidic protein (GFAP) regulatory elements (which causes preneoplastic astrocytic lesions and stochastically astrocytomas of varying degrees of malignancy) into TP53+/- or RB-1+/- mice. Hemizygosity for TP53 or RB-1 did not increase the incidence or shorten the latency of astrocytic tumors in GFAP-v-src mice over a period of up to 76 weeks. Single strand conformation analysis of exons 5 to 8 of non-ablated TP53 alleles revealed altered migration patterns in only 3/16 tumors analyzed. Wild-type RB-1 alleles were retained in all RB-1+/-GFAP-v-src mice-derived astrocytic tumors analyzed, and pRb immunostaining revealed protein expression in all tumors. Conversely, the GFAP-v-src transgene did not influence the development of extraneural tumors related to TP53 or RB-1 hemizygosity. Therefore, the present study indicates that neither loss of RB-1 nor of TP53 confer a growth advantage in vivo to preneoplastic astrocytes expressing v-src, and suggests that RB-1 and TP53 belong to one single complementation group along with v-src in this transgenic model of astrocytoma development. The stochastic development of astrocytic tumors in GFAP-v-src, TP53+/- GFAP-v-src, and RB-1+/- GFAP-v-src transgenic mice indicates that additional hitherto unknown genetic lesions of astrocytes contribute to tumorigenesis, whose elucidation may prove important for our understanding of astrocytoma initiation and progression.
Resumo:
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in pacemaker cells very early during cardiogenesis. This work aimed at determining to what extent these channels are implicated in the electromechanical disturbances induced by a transient oxygen lack which may occur in utero. Spontaneously beating hearts or isolated ventricles and outflow tracts dissected from 4-day-old chick embryos were exposed to a selective inhibitor of HCN channels (ivabradine 0.1-10microM) to establish a dose-response relationship. The effects of ivabradine on electrocardiogram, excitation-contraction coupling and contractility of hearts submitted to anoxia (30min) and reoxygenation (60min) were also determined. The distribution of the predominant channel isoform, HCN4, was established in atria, ventricle and outflow tract by immunoblotting. Intrinsic beating rate of atria, ventricle and outflow tract was 164+/-22 (n=10), 78+/-24 (n=8) and 40+/-12bpm (n=23, mean+/-SD), respectively. In the whole heart, ivabradine (0.3microM) slowed the firing rate of atria by 16% and stabilized PR interval. These effects persisted throughout anoxia-reoxygenation, whereas the variations of QT duration, excitation-contraction coupling and contractility, as well as the types and duration of arrhythmias were not altered. Ivabradine (10microM) reduced the intrinsic rate of atria and isolated ventricle by 27% and 52%, respectively, whereas it abolished activity of the isolated outflow tract. Protein expression of HCN4 channels was higher in atria and ventricle than in the outflow tract. Thus, HCN channels are specifically distributed and control finely atrial, ventricular and outflow tract pacemakers as well as conduction in the embryonic heart under normoxia and throughout anoxia-reoxygenation.
Resumo:
BACKGROUND: At least 2 apparently independent mechanisms, microsatellite instability (MSI) and chromosomal instability, are implicated in colorectal tumorigenesis. Their respective roles in predicting clinical outcomes of patients with T3N0 colorectal cancer remain unknown. METHODS: Eighty-eight patients with a sporadic T3N0 colon or rectal adenocarcinoma were followed up for a median of 67 months. For chromosomal instability analysis, Ki-ras mutations were determined by single-strand polymerase chain reaction, and p53 protein staining was studied by immunohistochemistry. For MSI analysis, DNA was amplified by polymerase chain reaction at 7 microsatellite targets (BAT25, BAT26, D17S250, D2S123, D5S346, transforming growth factor receptor II, and BAX). RESULTS: Overall 5-year survival rate was 72%. p53 protein nuclear staining was detected in 39 patients (44%), and MSI was detected in 21 patients (24%). MSI correlated with proximal location (P <.001) and mucinous content (P <.001). In a multivariate analysis, p53 protein expression carried a significant risk of death (relative risk = 4.0, 95% CI = 1.6 to 10.1, P =.004). By comparison, MSI was not a statistically significant prognostic factor for survival in this group (relative risk = 2.2, 95% CI = 0.6 to 7.3, P =.21). CONCLUSIONS: p53 protein overexpression provides better prognostic discrimination than MSI in predicting survival of patients with T3N0 colorectal cancer. Although MSI is associated with specific clinicopathologic parameters, it did not predict overall survival in this group. Assessment of p53 protein expression by immunocytochemistry provides a simple means to identify a subset of T3N0 patients with a 4-times increased risk for death.
Resumo:
The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical trials with temozolomide plus bevacizumab therapy in metastatic melanoma patients are ongoing, although the predictive value of the MGMT promoter methylation status in this setting remains unclear. We assessed MGMT promoter methylation in formalin-fixed, primary tumor tissue of metastatic melanoma patients treated with first-line temozolomide and bevacizumab from the trial SAKK 50/07 by methylation-specific polymerase chain reaction. In addition, the MGMT expression levels were also analyzed by MGMT immunohistochemistry. Eleven of 42 primary melanomas (26%) revealed a methylated MGMT promoter. Promoter methylation was significantly associated with response rates CR + PR versus SD + PD according to RECIST (response evaluation criteria in solid tumors) (p<0.05) with a trend to prolonged median progression-free survival (8.1 versus 3.4 months, p>0.05). Immunohistochemically different protein expression patterns with heterogeneous and homogeneous nuclear MGMT expression were identified. Negative MGMT expression levels were associated with overall disease stabilization CR + PR + SD versus PD (p=0.05). There was only a poor correlation between MGMT methylation and lack of MGMT expression. A significant proportion of melanomas have a methylated MGMT promoter. The MGMT promoter methylation status may be a promising predictive marker for temozolomide therapy in metastatic melanoma patients. Larger sample sizes may help to validate significant differences in survival type endpoints.
Resumo:
PURPOSE: To evaluate the safety and potential use of poly(lactic) acid (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as vectors for gene transfer to RPE cells. METHODS: Experiments were conducted with primary bovine RPE cells and with the ARPE-19 human RPE cell line. Rhodamine loaded NPs were used to study factors influencing the internalization process by the various RPE cells: concentrations of NPs, duration of contact time, stage of cell culture and ambient temperature. The extent of NPs internalization was evaluated by fluorescence and phase microscopy. Potential NP toxicity was measured by the trypan blue exclusion dye test and the MTT method. Green fluorescent protein (GFP) plasmid or red nuclear fluorescent protein (RNFP) plasmid were sequestered in NPs. The ability ot these "loaded" NPs to generate gene transfection and protein expression in RPE cells was assessed both in vivo and in vitro by fluorescence and confocal microscopy. RESULTS: The extent of NP internalization in cultured cells increases with their concentration reaching a plateau at 1 mg/ml and a contact time of up to 6 h. Temperature and culture stage did not influence the in vitro internalization process. No toxic effects on RPE cells could be detected when these were incubated with up to 4 mg/ml of NPs. In human and bovine RPE cells incubated with GFP loaded NPs, cytoplasmic green fluorescence was observed in 14+/-1.65% of the cultured cells. Incubation with RNFP loaded NPs yielded a nuclear red fluorescence in 18.9+/-1.6% of the cells. These percentage levels of expression initially detected after 48 h of incubation remained unchanged during the following 8 additional days in culture. No significant differences in the extent of cytoplasm or nuclear fluorescence expression were observed between bovine or human RPE cultured cells. In vivo, a preferential RNFP expression within the RPE cell layer was detected after intra vitreous injection of RNFP plasmid loaded NPs. CONCLUSIONS: The ability of PLGA NPs to sequester plasmids, their nontoxic characteristics, and rapid internalization enables gene transfer and expression in RPE cells. These findings may be of potential use when designing future gene therapy strategies for ocular diseases of the posterior segment.
Resumo:
Background and aims: Anandamide is an endocannabinoid that evokes hypotension by interaction with peripheral cannabinoid CB1 receptors and with the perivascular transient receptor potential vanilloid type 1 protein (TRPV1). As anandamide has been implicated in the vasodilated state in advanced cirrhosis, the study investigated whether the mesenteric bed from cirrhotic rats has an altered and selective vasodilator response to anandamide. Methods: We assessed vascular sensitivity to anandamide, mRNA and protein expression of cannabinoid CB1 receptor and TRPV1 receptor, and the topographical distribution of cannabinoid CB1 receptors in resistance mesenteric arteries of cirrhotic and control rats. Results: Mesenteric vessels of cirrhotic animals displayed greater sensitivity to anandamide than control vessels. This vasodilator response was reverted by CB1 or TRPV1 receptor blockade, but not after endothelium denudation or nitric oxide inhibition. Anandamide had no effect on distal femoral arteries. CB1 and TRPV1 receptor protein was higher in cirrhotic than in control vessels. Neither CB1 mRNA nor protein was detected in femoral arteries. Immunochemistry showed that CB1 receptors were mainly in the adventitia and in the endothelial monolayer, with higher expression observed in vessels of cirrhotic rats than in controls. Conclusions: These results indicate that anandamide is a selective splanchnic vasodilator in cirrhosis which predominantly acts via interaction with two different types of receptors, CB1 and TRPV1 receptors, which are mainly located in perivascular sensory nerve terminals of the mesenteric resistance arteries of these animals.
Resumo:
Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.
Resumo:
A chronic inflammatory microenvironment favors tumor progression through molecular mechanisms that are still incompletely defined. In inflammation-induced skin cancers, IL-1 receptor- or caspase-1-deficient mice, or mice specifically deficient for the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) in myeloid cells, had reduced tumor incidence, pointing to a role for IL-1 signaling and inflammasome activation in tumor development. However, mice fully deficient for ASC were not protected, and mice specifically deficient for ASC in keratinocytes developed more tumors than controls, suggesting that, in contrast to its proinflammatory role in myeloid cells, ASC acts as a tumor-suppressor in keratinocytes. Accordingly, ASC protein expression was lost in human cutaneous squamous cell carcinoma, but not in psoriatic skin lesions. Stimulation of primary mouse keratinocytes or the human keratinocyte cell line HaCaT with UVB induced an ASC-dependent phosphorylation of p53 and expression of p53 target genes. In HaCaT cells, ASC interacted with p53 at the endogenous level upon UVB irradiation. Thus, ASC in different tissues may influence tumor growth in opposite directions: it has a proinflammatory role in infiltrating cells that favors tumor development, but it also limits keratinocyte proliferation in response to noxious stimuli, possibly through p53 activation, which helps suppressing tumors.
Resumo:
Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including c-Jun, Notch, Sox-2 and Pax-3, all usually expressed in the immature Schwann cells and suppressed at the onset of myelination. In order to identify new negative regulators of myelination involved in the development of the peripheral nervous system (PNS) we analyzed the data from a previously performed transcriptional analysis of myelinating Schwann cells. Based on its transcriptional expression profile during myelination, Sox4, a member of the Sox gene family, was identified as a potential candidate. Previous studies demonstrated that prolonged Sox4 expression in oligodendrocytes maintains these cells in a premyelinating state, further suggesting its role as a negative regulator of myelination. Concomitantly, we observed upregulation of Sox4 mRNA and protein expression levels in the PNS of three different models of demyelinating neuropathies (Pmp22, Lpin1, and Scap KOs). To better characterize the molecular function of Sox4, we used a viral vector allowing Sox4 overexpression in cultured Schwann cells and in neuron-Schwann cell co-cultures. In parallel, we generated two transgenic lines of mice in which the overexpression of Sox4 is driven specifically in Schwann cells by the Myelin Protein Zero gene promoter. The preliminary data from these in vitro and in vivo experiments show that overexpression of Sox4 in PNS causes a delay in progression of myelination thus indicating that Sox4 acts as a negative regulator of Schwann cell myelination.
Resumo:
Human T lymphocytes have a finite life span resulting from progressive telomere shortening that occurs at each cell division, eventually leading to chromosomal instability. It has been shown that ectopic expression of the human telomerase reverse transcriptase (hTERT) gene into various human cells results in the extension of their replicative life span, without inducing changes associated with transformation. However, it is still unclear whether cells that over-express telomerase are physiologically and biochemically indistinguishable from normal cells. To address this question, we compared the proteome of young and aged human CD8(+) T lymphocytes with that of T cells transduced with hTERT. Interestingly, we found no global changes in the protein pattern in young T cells, irrespective of telomerase expression. In contrast, several relevant proteins with differential expression patterns were observed in hTERT-transduced T cells with extended life span upon long-term culture. Altogether, our data revealed that T lymphocytes over-expressing telomerase displayed an intermediate protein pattern, sharing a similar protein expression not only with young T cells, but also with aged T cells. Finally, the results obtained from this global proteomic approach are in agreement with the overall gene transcription profiling performed on the same T-cell derived clones.
Resumo:
Version abregée L'ischémie cérébrale est la troisième cause de mort dans les pays développés, et la maladie responsable des plus sérieux handicaps neurologiques. La compréhension des bases moléculaires et anatomiques de la récupération fonctionnelle après l'ischémie cérébrale est donc extrêmement importante et représente un domaine d'intérêt crucial pour la recherche fondamentale et clinique. Durant les deux dernières décennies, les chercheurs ont tenté de combattre les effets nocifs de l'ischémie cérébrale à l'aide de substances exogènes qui, bien que testées avec succès dans le domaine expérimental, ont montré un effet contradictoire dans l'application clinique. Une approche différente mais complémentaire est de stimuler des mécanismes intrinsèques de neuroprotection en utilisant le «modèle de préconditionnement» : une brève insulte protège contre des épisodes d'ischémie plus sévères à travers la stimulation de voies de signalisation endogènes qui augmentent la résistance à l'ischémie. Cette approche peut offrir des éléments importants pour clarifier les mécanismes endogènes de neuroprotection et fournir de nouvelles stratégies pour rendre les neurones et la glie plus résistants à l'attaque ischémique cérébrale. Dans un premier temps, nous avons donc étudié les mécanismes de neuroprotection intrinsèques stimulés par la thrombine, un neuroprotecteur «préconditionnant» dont on a montré, à l'aide de modèles expérimentaux in vitro et in vivo, qu'il réduit la mort neuronale. En appliquant une technique de microchirurgie pour induire une ischémie cérébrale transitoire chez la souris, nous avons montré que la thrombine peut stimuler les voies de signalisation intracellulaire médiées par MAPK et JNK par une approche moléculaire et l'analyse in vivo d'un inhibiteur spécifique de JNK (L JNK) .Nous avons également étudié l'impact de la thrombine sur la récupération fonctionnelle après une attaque et avons pu démontrer que ces mécanismes moléculaires peuvent améliorer la récupération motrice. La deuxième partie de cette étude des mécanismes de récupération après ischémie cérébrale est basée sur l'investigation des bases anatomiques de la plasticité des connections cérébrales, soit dans le modèle animal d'ischémie transitoire, soit chez l'homme. Selon des résultats précédemment publiés par divers groupes ,nous savons que des mécanismes de plasticité aboutissant à des degrés divers de récupération fonctionnelle sont mis enjeu après une lésion ischémique. Le résultat de cette réorganisation est une nouvelle architecture fonctionnelle et structurelle, qui varie individuellement selon l'anatomie de la lésion, l'âge du sujet et la chronicité de la lésion. Le succès de toute intervention thérapeutique dépendra donc de son interaction avec la nouvelle architecture anatomique. Pour cette raison, nous avons appliqué deux techniques de diffusion en résonance magnétique qui permettent de détecter les changements de microstructure cérébrale et de connexions anatomiques suite à une attaque : IRM par tenseur de diffusion (DT-IR1V) et IRM par spectre de diffusion (DSIRM). Grâce à la DT-IRM hautement sophistiquée, nous avons pu effectuer une étude de follow-up à long terme chez des souris ayant subi une ischémie cérébrale transitoire, qui a mis en évidence que les changements microstructurels dans l'infarctus ainsi que la modification des voies anatomiques sont corrélés à la récupération fonctionnelle. De plus, nous avons observé une réorganisation axonale dans des aires où l'on détecte une augmentation d'expression d'une protéine de plasticité exprimée dans le cône de croissance des axones (GAP-43). En appliquant la même technique, nous avons également effectué deux études, rétrospective et prospective, qui ont montré comment des paramètres obtenus avec DT-IRM peuvent monitorer la rapidité de récupération et mettre en évidence un changement structurel dans les voies impliquées dans les manifestations cliniques. Dans la dernière partie de ce travail, nous avons décrit la manière dont la DS-IRM peut être appliquée dans le domaine expérimental et clinique pour étudier la plasticité cérébrale après ischémie. Abstract Ischemic stroke is the third leading cause of death in developed countries and the disease responsible for the most serious long-term neurological disability. Understanding molecular and anatomical basis of stroke recovery is, therefore, extremely important and represents a major field of interest for basic and clinical research. Over the past 2 decades, much attention has focused on counteracting noxious effect of the ischemic insult with exogenous substances (oxygen radical scavengers, AMPA and NMDA receptor antagonists, MMP inhibitors etc) which were successfully tested in the experimental field -but which turned out to have controversial effects in clinical trials. A different but complementary approach to address ischemia pathophysiology and treatment options is to stimulate and investigate intrinsic mechanisms of neuroprotection using the "preconditioning effect": applying a brief insult protects against subsequent prolonged and detrimental ischemic episodes, by up-regulating powerful endogenous pathways that increase resistance to injury. We believe that this approach might offer an important insight into the molecular mechanisms responsible for endogenous neuroprotection. In addition, results from preconditioning model experiment may provide new strategies for making brain cells "naturally" more resistant to ischemic injury and accelerate their rate of functional recovery. In the first part of this work, we investigated down-stream mechanisms of neuroprotection induced by thrombin, a well known neuroprotectant which has been demonstrated to reduce stroke-induced cell death in vitro and in vivo experimental models. Using microsurgery to induce transient brain ischemia in mice, we showed that thrombin can stimulate both MAPK and JNK intracellular pathways through a molecular biology approach and an in vivo analysis of a specific kinase inhibitor (L JNK1). We also studied thrombin's impact on functional recovery demonstrating that these molecular mechanisms could enhance post-stroke motor outcome. The second part of this study is based on investigating the anatomical basis underlying connectivity remodeling, leading to functional improvement after stroke. To do this, we used both a mouse model of experimental ischemia and human subjects with stroke. It is known from previous data published in literature, that the brain adapts to damage in a way that attempts to preserve motor function. The result of this reorganization is a new functional and structural architecture, which will vary from patient to patient depending on the anatomy of the damage, the biological age of the patient and the chronicity of the lesion. The success of any given therapeutic intervention will depend on how well it interacts with this new architecture. For this reason, we applied diffusion magnetic resonance techniques able to detect micro-structural and connectivity changes following an ischemic lesion: diffusion tensor MRI (DT-MRI) and diffusion spectrum MRI (DS-MRI). Using DT-MRI, we performed along-term follow up study of stroke mice which showed how diffusion changes in the stroke region and fiber tract remodeling is correlating with stroke recovery. In addition, axonal reorganization is shown in areas of increased plasticity related protein expression (GAP 43, growth axonal cone related protein). Applying the same technique, we then performed a retrospective and a prospective study in humans demonstrating how specific DTI parameters could help to monitor the speed of recovery and show longitudinal changes in damaged tracts involved in clinical symptoms. Finally, in the last part of this study we showed how DS-MRI could be applied both to experimental and human stroke and which perspectives it can open to further investigate post stroke plasticity.