1000 resultados para Proteína beta amilóide : Toxicidade
Resumo:
Extracts obtained from leaves, seeds and bark of Unonopsis lindmanii were evaluated by means of Brine Shrimp Lethality test (BSL). Through bioassay-guided chromatographic fractionation, liriodenine, an oxoaporphine alkaloid, was isolated from the bark extracts as the bioactive compound. Two additional inactive known alkaloids, unonopsine and lysicamine were also isolated from the bark extracts.
Propriedades fotofísicas de Eu3+ e Tb3+ imobilizados em sílica gel funcionalizada com beta-Dicetonas
Resumo:
Synthetic procedures, characterization and luminescent properties of Eu3+ and Tb3+ ions supported on silica gel functionalized with beta-diketones are presented. The functionalization with propyl benzoyltrifluoroacetone (BPG), dibenzoylmethane (DBM) and hexafluoroacetone (HPG), leads to new luminescent materials which photophysical properties depend on the group substituent in the beta-diketone. These systems were evaluated in terms of luminescence and lifetime of the Eu3+ and Tb3+ ions. Silica functionalization was confirmed by TGA and Elemental Analysis. The sample contents of ions were from 0,2 to 0,3 % (w/w).
Resumo:
The synthesis of ten symmetrically and unsymmetrically substituted 1,3,5-triazines by Phase Transfer Catalysis (PTC) method is described. Their toxicities were determined against Artemia salina Leach. The LD50 values have also been obtained for these compounds.
Resumo:
The extract obtained from stem bark of Duguetia glabriuscula - Annonaceae was evaluated by Brine Shrimp Lethality test (BSL). The bioactive compounds, oxobufoline and lanuginosine, two oxoaporphine alkaloids were isolated by activity-guided fractionation. In addition, the compounds asaraldehyde, (+)-allo-aromadendrane-10beta, 14-diol, and two aporphine alkaloids, polyalthine and oliveridine were also obtained.
Resumo:
This paper supplies a compact revision on the herbicide glyphosate physic-chemistry characteristic mains, including toxicity and valid Brazilian legislation for its use.
Resumo:
In this work the formation of multilayers composed by carboxymethylcellulose (CMC), chitosane and bovine serum albumin (BSA) was studied by ellipsometry. First, the adsorption behavior of carboxymethylcellulose onto amino-terminated surfaces was investigated as a function of molecular weight and average degree of substitution of CMC. The influence of these parameters on the adsorbed amount of CMC onto amino-terminated substrates was absent. However, the interaction of CMC covered surfaces with chitosane and BSA was favored when the average degree of substitution of CMC was increased. The adsorption of BSA onto the polysaccharide systems was studied as a function of pH. At the isoelectric point of BSA a maximum in the adsorbed amount was found.
Resumo:
DDT and others organochlorine insecticides are very persistent substances. Clinical symptoms of intoxication have been reported in humans, although the main problem concerning such substances is bioaccumulation and biomagnification along throphic chains, leading to contamination of top predators and humans after them. In this review these characteristics are described, as well as some aspects of the control of vector borne diseases, like leishmaniasis and malaria, which were until recently, controlled by the health authorities using DDT.
Resumo:
Naphthoquinones have been extensively studied due to their activity as topoisomerase inhibitors. These enzymes are critical to DNA replication in cells. In addition, naphthoquinones have been shown to induce what are known as "reactive oxygen species" that can cause damage to cells. beta-Lapachone is a very important pyranaphthoquinone obtained from the heartwood of the lapacho tree, Tabebuia avellanedae Lorentz ex. Griseb. (Bignoniaceae), and other Tabebuia trees native to Central and South America and chemically from lapachol. beta-Lapachone has a diversity of useful biological activities against various cancer cell lines such as human ovarian and prostate tumors and, at lower doses is a radiosensitizer of several human cancer cell lines. It gives rise to a variety of effects in vitro including the inhibition or activation of topoisomerase I an II in a distinct manner from that of other topoisomerase inhibitors. This review intend to discuss some details of the mechanisms of quinone-induced cell damage and death, and we also summarize results of the literature indicating that b-Lapachone may take part in quinone-elicited apoptosis despite the fact that its mechanism of action in vivo and its targets are still unknown.
Resumo:
Rutheniumporphyrins, especially with several nitro groups in b-positions, were used in the cyclohexane oxidation in the presence of iodosylbenzene, hydrogen peroxide and sodium hypochlorite as oxygen donors, under mild conditions. The beta-polynitrated complexes were able to promote the catalytic cyclohexane oxidation. They show an exceptionally high catalytic efficiency and resistance to attack by strong oxidizing agents. The cyclohexane oxidation was monitored by gas chromatography and the results showed that the beta-polynitrated rutheniumporphyrins are better catalysts when compared to other complexes not beta-polynitrated. In all cases, the 2-phenylsubstituted complexes were more efficient than 4-phenylsubstituted complexes. The importance of the ortho effect to oxidation was shown.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Multitarget compounds are increasingly being pursued for the effective treatment of complex diseases. Herein, we describe the design and synthesis of a novel class of shogaolhuprine hybrids, purported to hit several key targets involved in Alzheimer"s disease. The hybrids have been tested in vitro for their inhibitory activity against human acetylcholinesterase and butyrylcholinesterase and antioxidant activity (ABTS.+, DPPH and Folin-Ciocalteu assays), and in intact Escherichia coli cells for their Aβ42 and tau anti-aggregating activity. Also, their brain penetration has been assessed (PAMPA-BBB assay). Even though the hybrids are not as potent AChE inhibitors or antioxidant agents as the parent huprine Y and [4]-shogaol, respectively, they still exhibit very potent anticholinesterase and antioxidant activities and are much more potent Aβ42 and tau anti-aggregating agents than the parent compounds. Overall, the shogaolhuprine hybrids emerge as interesting brain permeable multitarget anti-Alzheimer leads.