1000 resultados para Properties of Bacterial Lipases
Resumo:
The aim of the study was to evaluate the influence of partial nitrite replacement by chitosan on the quality of Ham Visking (a type of pork sausages). Five Ham Visking formulations were elaborated modifying the sodium nitrite (0.011; 0.016 or 0.0212%) and chitosan concentrations (0.25 or 0.5%) in the products. Sausages were stored at 4 ºC and physicochemical, microbiological, and sensorial evaluations were performed in order to estimate their shelf life. Chitosan can be used in pork sausages without affecting ensory attributes such as color although the panelists detected textural differences among the samples with chitosan, which suggests that there is some influence of deacetylation degree of chitosan on the textural behavior of sausages which still needed to be explained for a successful application of chitosan in meat products. The reduction of residual sodium nitrite did not affect the color and flavor of such products, but the use of chitosan increasedsignificantly the shelf life of sausages.
Resumo:
Cajá-manga, also known as golden apple and hog-plum, is an exotic fruit native from Îles de la Société (French Polynesia), which was first introduced in Brazil in 1985. The pulp of ripe fruit was treated with the commercial enzymatic pool and its effect was evaluated in terms of yield, as well as the physical properties viscosity, turbidity and color (L* values). Response surface methodology was used and three levels were adopted for the independent variables temperature (30, 40, and 50 ºC), incubation time (30, 60 and 90 minutes) and enzyme concentration (0.01, 0.05, 0.09 v/v%). A central composite statistical design was used to guide the experimental work. The enzyme treatment highly increased both juice yield (up to 56%) and color (up to 8.6%) and strongly decreased viscosity (up to 57.4%), clarity (up to 77%) and turbidity (up to 85.5%). Incubation time was the most interacting facto, whereas temperature was the least one. Optimization analysis was carried out to reduce enzyme concentration to a minimum by superposing the contour plots of the tested properties, and the recommended ranges of the variables enzyme concentration, process temperature and incubation time were, respectively, 0.042-0.068%, 47.0-49.0 ºC and 82-90 minutes.
Resumo:
Mimic biological structures such as the cell wall of plant tissues may be an alternative to obtain biodegradable films with improved mechanical and water vapor barrier properties. This study aims to evaluate the mechanical properties and water vapor permeability (WVP) of films produced by using the solvent-casting technique from blended methylcellulose, glucomannan, pectin and gelatin. First, films from polysaccharides at pH 4 were produced. The film with the best mechanical performance (tensile strength = 72.63 MPa; elongation = 9.85%) was obtained from methylcellulose-glucomannan-pectin at ratio 1:4:1, respectively. Then, gelatin was added to this polysaccharide blend and the pH was adjusted to 4, 5 and 6. Results showed significant improvement in WVP when films were made at pH 5 and at polysaccharides/gelatin ratio of 90/10 and 10/90, reaching 0.094 and 0.118 g.mm/h.m².kPa as values, respectively. Films with the best mechanical properties were obtained from the blend of polysaccharides, whereas WVP was improved from the blend of polysaccharides and gelatin at pH 5.
Resumo:
Baru (Dipteryx alata Vog.), a species of legume found in the Brazilian savannas, was investigated in this study for the composition of its flesh and seed. Thermal analyses, Thermogravimetry (TG), and Differential Scanning Calorimetry (DSC) were used to investigate the proteins in defatted meal, concentrate, and protein isolate. The protein concentrate was extracted at pH 10, followed by a precipitation at the isoelectric point to obtain the isolate that was spray dried. The thermogravimetric curves were obtained under a nitrogen atmosphere with a 100 mL/minutes flow. The initial, final and peak temperatures and mass loss were analyzed. Within the performed temperature ranges studied, the defatted meal and concentrate presented four steps of mass loss, while the isolate showed only two steps. The protein content of defatted meal from Baru nuts was higher than that of the isolate. On the other hand, there was a reduction in enthalpy, which suggests that the process applied to obtain the baru concentrate and isolate led to protein denaturation.
Resumo:
Physicochemical characteristics and functional properties of vitabosa flour (Mucuna deeringiana) and soybean flour (Glycine max) were determined. Oil absorption capacity was higher in vitabosa. Water absorption capacity was higher in soy and it was affected by the change in the ionic strength of the medium. Emulsifying Activity (EA) decreased with increasing concentration of flour, while Emulsifying Stability (ES) showed an increased. EA and ES of flours have more ionic strength in the range between 0.0 and 0.4 M, but it is reduced afterwards with the higher concentration of NaCl. Foaming stability varied with the concentration of flour solution reaching maximum values of 39 and 33% for vitabosa and soybean, respectively at 10% flour concentration.Vitabosa had the best foaming capacity (56% to 0.6 M) compared with soybeans (47% to 0.4 M). Maximum capacity of gelation was observed in vitabosa at 10% flour concentration. Increases in ionic strength of the flour solution, at low salt concentrations (<0.4 M), improved the gelation of flours.
Resumo:
The purpose of this study was to evaluate changes in the structure and some functional properties of biofilms added with modified clays (Cloisite® 15A and Cloisite® 30B) prepared by the casting method. The analysis of the microstructure of the films, scanning electron microscopy (SEM), Optical microscopy (MO), and Infrared Spectroscopy (FTIR) indicated that the addition of clay in the films resulted in the formation of a heterogeneous microstructure, microcomposite or tactoid. Due to the formation of a microcomposite structure, functional properties of the films added with both clays such as opacity, solubility, and permeability to water vapor (PVA), were not better than those of the control film. Thus, it was concluded that although it is possible to produce a film added with modified clays using the casting method, it was not possible to obtain intercalation or exfoliation in a nanocomposite, which would result in improved functional properties.
Resumo:
Several studies have shown the antimicrobial and antioxidant properties of turmeric (Curcuma longa), widely used in food industry as a colorant, among other functions. The aim of this study was to determine the antioxidant and antimicrobial properties of turmeric essential oil against pathogenic bacteria and to study the influence of the addition of ascorbic acid on the prevention of polyphenols oxidation. The commercial turmeric essential oil alone did not show bactericidal activity against the microorganisms studied, Listeria monocytogenes and Salmonella typhimurium, but when combined with ascorbic acid, it showed significant antibacterial activity. The highest antimicrobial activity of turmeric essential oil against Salmonella typhimurium was 15.0 ± 1.41 mm at the concentration of 2.30 mg.mL-1 of essential oil and 2.0 mg.mL-1 of ascorbic acid. With regard to Listeria monocytogenes, the largest zone of inhibition (13.7 ± 0.58 mm) was obtained at the same concentrations. The essential oil showed antioxidant activity of EC50 = 2094.172 µg.mL-1 for the DPPH radical scavenging method and 29% under the concentration of 1.667 mg.mL-1 for the β-carotene bleaching method.
Resumo:
Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.
Resumo:
Given the broad acceptance of sour cassava starch biscuits in Brazil and the nutritional quality of quinoa flour, this study aimed to evaluate the effect of extrusion temperature, screw speed, moisture, and amount of quinoa flour on the physical properties of puffed snacks. Extrusion process was carried out using a single-screw extruder in a factorial central composite design with four factors. Effects of moisture and amount of quinoa flour on the expansion index and specific volume of snacks were observed. There was a pronounced increase in water solubility index of blends with the extrusion process with significant effects of all process parameters on the WSI. Higher water absorption index (WAI) was observed under high temperature, low moisture, and lower quinoa flour amount. Temperature and amount of quinoa flour influenced the color of the snacks. A positive quadratic effect of quinoa flour on hardness of products was observed. Blends of sour cassava starch and quinoa flour have good potential for use as raw material in production of extruded snacks with good physical properties.
Resumo:
Although Brazil is a country of tradition in both the production and consumption of coffee, the most of the coffee is consumed as a beverage, which reduces greatly the competitiveness on international market, for reducing the chances of supplying the product under other forms of consumption. Owing to that, the aim of this study was developing a precooked mixed flour containing coffee powder and rice for use in coffee flavored products. Mixtures of rice and coffee in the proportions of 900:100, 850:150 and 800:200 g, respectively, were processed in a single screw extruder (Brabender DS-20, Duisburg, German) and the effect of the extrusion process on the variables moisture content (16%, 18% and 20%) and temperature in the third extruding zone (140 °C, 160 °C and 180 °C) was studied. The results for expansion index ranged from 2.91 to 11.11 mm in diameter; the water absorption index from 4.59 to 6.33 g gel/g sample and the water solubility index varied from 4.05% to 8.57%. These results showed that, despite coffee powder influenced the variables studied, the expanded product after milling resulted in a extruded mixture with good absorption and water solubility indices, which favors the use of the precooked mixed flour for human consumption.
Resumo:
The aim of this study was to evaluate the influence of high hydrostatic pressure (150, 250, 350, 450, and 550 MPa), applied for 5 minutes, on antioxidant capacity, total phenolic content, color, firmness, rehydration ratio, and water holding capacity of aloe vera gel stored for 60 days at 4 °C. The analyzed properties of the pressurized gel showed significant changes after the storage period. The highest value of total phenolic content was found at 550 MPa. However, a decrease in the antioxidant capacity was observed for all pressurized gel samples when compared to the control sample (p < 0.05). The smallest changes in product color were observed at pressure levels between 150 and 250 MP. The application of high hydrostatic pressure resulted in lower gel firmness, and the lowest value was found at 150 MPa (p < 0.05). On the other hand, the untreated sample showed a greater decrease in firmness, indicating that high pressure processing preserves this property. The application of high hydrostatic pressure exhibited modifications in the food matrix, which were evaluated in terms of rehydration ratio and water holding capacity.
Resumo:
Dulce de leche (DL), a dairy dessert highly appreciated in Brazil, is a concentrated product containing about 70% m/m of total solids. Thermophysical and rheological properties of two industrial Brazilian Dulce de leche formulations (classic Dulce de leche and Dulce de leche added with coconut flakes 1.5% m/m) were determined at temperatures comprised between 28.4 and 76.4 °C. In general, no significant differences (p < 0.05) were observed in the presence of coconut flakes in the two formulations. Heat capacity varied from 2633.2 to 3101.8 J/kg.°C; thermal conductivity from 0.383 to 0.452 W/m.°C; specific mass from 1350.7 to 1310.7 kg/m³; and, thermal diffusivity from (1.082 × 10-7 to 1.130 × 10-7) m²/s. The Bingham model was used to properly describe the non-Newtonian behavior of both formulations, with yielding stress values varying from 27.3 to 17.6 Pa and plastic viscosity from 19.9 to 5.9 Pa.s.
Resumo:
The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed) were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K) in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.
Resumo:
The aim of this study was to develop fettuccini type rice fresh pasta by cold extrusion. To produce the pasta, a 2² Central Composite Rotational Design was used, in which the effects of the addition of pre-gelatinized rice flour - PGRF (0-60%) and modified egg albumin - MEA (0-10%) were studied. The dependent variables were the results of the cooking test and of the instrumental texture. The optimum cooking time for all of the formulations of rice fresh pasta was 3 minutes. MEA had a greater effect on increasing the weight of the pasta when compared to that of PGRF. It was found that with the addition of PGRF increase in loss of solids in cooking water, whereas MEA exerted the opposite effect on this parameter. Moreover, the maximum value of MEA (10%) had an optimum effect on pasta firmness, while PGRF had a negative effect on this parameter. The maximum values of PGRF and MEA reduced the stickiness of the pasta. Based on these results and on the parameters considered as most important, the rice pasta with the best technological characteristics was that with the maximum levels of MEA (10%) and no addition of PGRF (0%). This product was submitted to sensory and microbiological analyses, with good results.
Resumo:
There is a trend towards the use of novel technologies nowadays, mainly focused on biological processes, for recycling and the efficient utilization of organic residues that can be metabolized by different microorganisms as a source of energy. In the present study the isolation of bacterial strains from six different agro-industrial by-products and waste was performed with the objective of evaluating their hydrolytic capacities and suitability for use in bioconversion of specific substrates. The 34 isolated strains were screened in specific culture media for the production of various hydrolytic enzymes (lipase, protease, cellulase, and amylase). It was found that 28 strains exhibited proteolytic activity, 18 had lipolytic activity, 13 had caseinolytic activity, 15 had amylolytic activity, and 11 strains exhibited cellulolytic activity. The strains that showed the highest hydrolytic capacities with biotechnological potential were selected, characterized genotipically, and identified as Bacillus, Serratia, Enterococcus, Klebsiella, Stenotrophomonas, Lactococcus, and Escherichia genera. It was concluded that the strain isolates have a high potential for use in the bioconversion of agro-industrial waste, both as a pure culture and as a microbial consortium.