952 resultados para Prokaryotic Genomes
Resumo:
The 195-bp satellite DNA is the most abundant Trypanosoma cruzi repetitive sequence. Here we show by RNA blotting and RT-PCR that 195 SAT is intensely transcribed. We observed a positive correlation between the level of satellite RNA and the abundance of the satellite copies in the genome of T cruzi strains and that the satellite expression is not developmentally regulated. By analyzing CL Brener individual reads, we estimated that 195 SAT corresponds to approximately 5% of the CL Brener genome. 195 SAT elements were found in only 37 annotated contigs, indicating that a large number of satellite copies were not incorporated into the assembled data. The assembled satellite units are distributed in non-syntenic regions with Trypanosoma brucei and Leishmania major genomes, enriched with surface proteins, retroelements, RHS and hypothetical proteins. Satellite repeats were not observed in annotated subtelomeric regions. We report that 12 satellite sequences are truncated by the retroelement VIPER. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
MAPfastR is a software package developed to analyze QTL data from inbred and outbred line-crosses. The package includes a number of modules for fast and accurate QTL analyses. It has been developed in the R language for fast and comprehensive analyses of large datasets. MAPfastR is freely available at: http://www.computationalgenetics.se/?page_id=7.
Resumo:
A resistência a doenças em plantas transgênicas tem sido obtida por meio da expressão de genes isolados de bactérias, fungos micoparasitas e plantas. Neste trabalho, relatamos a utilização de um gene do fungo entomopatogênico Metarhizium anisopliae como modo de gerar resistência a doenças fúngicas em plantas. O gene chit1 codifica a quitinase CHIT42 (EC 3.2.1.14), pertencente a uma classe de glicosil-hidrolases capazes de converter quitina em oligômeros de N-acetil-glicosamina (NAcGlc). Quando presentes em tecidos vegetais, supõese que as quitinases ataquem especificamente a parede celular de fungos invasores, provocando danos às hifas e causando a morte por lise das células fúngicas. Deste modo, dois diferentes grupos de plantas transgênicas de Nicotiana tabacum foram produzidos: no primeiro deles, denominado chitplus, os indivíduos possuem o gene chit1 sob o controle do promotor CaMV 35S. O segundo grupo, demoninado chitless, consiste de plantas transformadas com um T-DNA não contendo o gene do fungo. Trinta e quatro plantas transgênicas resistentes à canamicina (17 de cada grupo) foram regeneradas a partir de discos de folhas infectados por Agrobacterium tumefaciens. A produção da quitinase em extratos protéicos de folhas foi analisada por zimogramas em SDS-PAGE contendo glicol-quitina e corados por calcoflúor branco, na forma de um screening dos transgênicos primários. As plantas transgênicas foram testadas, ainda, por meio de ensaios colorimétricos empregando oligômeros sintéticos de NAcGlc como substratos específicos, além de immunoblot e Western blot com soro anti-quitinase. A quantidade de enzima recombinante nas plantas chitplus variou desde nenhuma atividade detectável a elevados níveis de expressão da enzima. A hibridização de Southern blot demonstrou que o número de cópias do gene chit1 integradas no genoma vegetal foi estimado entre uma e quatro. A primeira geração de plantas transgênicas geradas por autofecundação de parentais portadores de duas cópias do transgene foi testada com relação à estabilidade da herança do transgene e em 43 de um total de 67 descendentes, originados de quatro cruzamentos independentes, o padrão de segregação não diferiu das proporções Mendelianas esperadas. Ensaios de resistência, desafiando as plantas transgênicas com o basidiomiceto Rhizoctonia solani foram realizados e uma evidente diminuição da área foliar contendo lesões fúngicas foi observada entre as linhagens transgênicas, embora variações na atividade quitinolítica tenham influenciado o nível de resistência. Nossos resultados sugerem uma relação direta entre a atividade específica de quitinase e ao aumento nos níveis de resistência às lesões causadas pela infecção por R. solani.
Resumo:
The microorganisms play very important roles in maintaining ecosystems, which explains the enormous interest in understanding the relationship between these organisms as well as between them and the environment. It is estimated that the total number of prokaryotic cells on Earth is between 4 and 6 x 1030, constituting an enormous biological and genetic pool to be explored. Although currently only 1% of all this wealth can be cultivated by standard laboratory techniques, metagenomic tools allow access to the genomic potential of environmental samples in a independent culture manner, and in combination with third generation sequencing technologies, the samples coverage become even greater. Soils, in particular, are the major reservoirs of this diversity, and many important environments around us, as the Brazilian biomes Caatinga and Atlantic Forest, are poorly studied. Thus, the genetic material from environmental soil samples of Caatinga and Atlantic Forest biomes were extracted by direct techniques, pyrosequenced, and the sequences generated were analyzed by bioinformatics programs (MEGAN MG-RAST and WEBCarma). Taxonomic comparative profiles of the samples showed that the phyla Proteobacteria, Actinobacteria, Acidobacteria and Planctomycetes were the most representative. In addition, fungi of the phylum Ascomycota were identified predominantly in the soil sample from the Atlantic Forest. Metabolic profiles showed that despite the existence of environmental differences, sequences from both samples were similarly placed in the various functional subsystems, indicating no specific habitat functions. This work, a pioneer in taxonomic and metabolic comparative analysis of soil samples from Brazilian biomes, contributes to the knowledge of these complex environmental systems, so far little explored
Resumo:
Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites
Resumo:
The human activities responsible for the ambient degradation in the modern world are diverse. The industrial activities are preponderant in the question of the impact consequences for brazilian ecosystems. Amongst the human activities, the petroliferous industry in operation in Potiguar Petroliferous Basin (PPB) displays the constant risk of ambient impacts in the integrant cities, not only for the human populations and the environment, but also it reaches the native microorganisms of Caatinga ground and in the mangrove sediment. Not hindering, the elaboration of strategies of bioremediation for impacted areas pass through the knowledge of microbiota and its relations with the environment. Moreover, in the microorganism groups associated to oil, are emphasized the sulfate-reducing prokaryotes (SRP) that, in its anaerobic metabolism, these organisms participate of the sulfate reduction, discharging H2S, causing ambient risks and causing the corrosion of surfaces, as pipelines and tanks, resulting in damages for the industry. Some ancestries of PRS integrate the Archaea domain, group of microorganisms whose sequenced genomes present predominance of extremophilic adaptations, including surrounding with oil presence. This work has two correlated objectives: i) the detection and monitoring of the gene dsrB, gift in sulfate-reducing prokaryotes, through DGGE analysis in samples of mDNA of a mangrove sediment and semiarid soil, both in the BPP; ii) to relate genomic characteristics to the ecological aspects of Archaea through in silico studies, standing out the importance to the oil and gas industry. The results of the first work suggest that the petrodegraders communities of SRP persist after the contamination with oil in mangrove sediment and in semiarid soil. Comparing the populations of both sites, it reveals that there are variations in the size and composition during one year of experiments. In the second work, functional and structural factors are the probable cause to the pressure in maintenance of the conservation of the sequences in the multiple copies of the 16S rDNA gene. Is verified also the discrepancy established between total content GC and content GC of the same gene. Such results relating ribosomal genes and the ambient factors are important for metagenomic evaluations using PCR-DGGE. The knowledge of microbiota associated to the oil can contribute for a better destination of resources by the petroliferous industry and the development of bioremediation strategies. Likewise, search to lead to the best agreement of the performance of native microbiota in biogeochemical cycles in Potiguar Petroliferous Basin ecosystem
Resumo:
O objetivo deste trabalho foi analisar a variabilidade genética da raça Brahman no Brasil, por meio da análise de 15.851 pedigrees. O arquivo de dados foi dividido em dois períodos: 1998-2001 e 2002-2005. A variabilidade genética foi avaliada por parâmetros baseados na probabilidade de origem do gene: número efetivo de ancestrais, número efetivo de fundadores, número efetivo de genomas remanescentes e coeficientes de parentesco e de endogamia. Os valores encontrados quanto ao número de fundadores mostraram que a população está em expansão, embora o número efetivo de fundadores tenha diminuído de um período para outro. Os resultados foram diferentes em relação ao número de ancestrais e genomas remanescentes, que apresentaram crescimento de 23% nos períodos avaliados. O coeficiente de endogamia diminuiu nos períodos estudados, porém o coeficiente de parentesco inter se cresceu. Poucos ancestrais apresentaram grande contribuição genética para a população, o que evidencia a utilização de poucos indivíduos na reprodução. A raça Brahman, no Brasil, encontra-se em expansão, caracterizada pela diminuição do coeficiente de endogamia e aumento nos números efetivos de fundadores e de genótipos remanescentes. Entretanto, a variabilidade genética da raça mostra aumento do parentesco inter se e grande concentração do patrimônio genético de poucos indivíduos na população.
Resumo:
This study aimed to characterize molecular of 13 accessions of Psidium spp. (Myrtaceae) that was been identified for the reaction to rootknot guava nematode. The DNA extraction of the samples was carried according to the protocol of Shillito & Saul (1988). The molecular markers type fAFLP, were obtained from fAFLP Regular Plant Genomes Fingerprinting Kit' (Applied Biosystems from Brasil Ltda.) and were tested 24 selectives combinations of primers, of which 18 showed amplification that produced 272 polymorphic markers. To the analysis of the markers were employed the softwares GeneScan (ABI Prism versao 1.0) and Genotyper (ABI Prism version 1.03), and the data collected were transformed into a binary matrix that was analyzed in the software PAUP (Phylogenetic Analysis Using Parcimony - version 3.01). Were calculated genetic distance index intra and interespecific between the genotipes. It was found that the AFLP markers were efficient in the discrimination between accessions, as well as in showing genetic similarity among accessions identified as resistant to the nematode Meloidogyne enterolobii, which could be discussed in the future.
Resumo:
Xylella fastidiosa is the etiologic agent of diseases in a wide range of economically important crops including citrus variegated chlorosis, a major threat to the Brazilian citrus industry. The genomes of several strains of this phytopathogen have been completely sequenced enabling large-scale functional studies. In this work we used whole-genome DNA microarrays to investigate the transcription profile of X. fastidiosa grown in defined media with different glucose concentrations. Our analysis revealed that while transcripts related to fastidian gum production were unaffected, colicin-V-like and fimbria precursors were induced in high glucose medium. Based on these results, we suggest a model for colicin-defense mechanism in X. fastidiosa.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Lettuce mottle virus (LeMoV) and dandelion yellow mosaic virus (DaYMV) infect lettuce in South America and Europe, respectively. LeMoV and DaYMV possess isometric particles, occur at low concentrations in plants and have narrow host ranges. Partial genome sequences of both viruses were obtained using purified viral preparations and universal primers for members of the family Sequiviridae. DaYMV and LeMoV sequences were analyzed and showed identity with other members of the family. Universal primers that detect both viruses and specific primers for LeMoV and DaYMV were designed and used in RT-PCR-based diagnostic assays. These results provide the first molecular data on the LeMoV and DaYMV genomes and suggest that LeMoV is a member of the genus Sequivirus, probably distinct from DaYMV.
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)