968 resultados para Programmed Readthrough


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nrd1 is an essential yeast protein of unknown function that has an RNA recognition motif (RRM) in its carboxyl half and a putative RNA polymerase II-binding domain, the CTD-binding motif, at its amino terminus. Nrd1 mediates a severe reduction in pre-mRNA production from a reporter gene bearing an exogenous sequence element in its intron. The effect of the inserted element is highly sequence-specific and is accompanied by the appearance of 3′-truncated transcripts. We have proposed that Nrd1 binds to the exogenous sequence element in the nascent pre-mRNA during transcription, aided by the CTD-binding motif, and directs 3′-end formation a short distance downstream. Here we show that highly purified Nrd1 carboxyl half binds tightly to the RNA element in vitro with sequence specificity that correlates with the efficiency of cis-element-directed down-regulation in vivo. A large deletion in the CTD-binding motif blocks down-regulation but does not affect the essential function of Nrd1. Furthermore, a nonsense mutant allele that produces truncated Nrd1 protein lacking the RRM has a dominant-negative effect on down-regulation but not on cell growth. Viability of this and several other nonsense alleles of Nrd1 appears to require translational readthrough, which in one case is extremely efficient. Thus the CTD-binding motif of Nrd1 is important for pre-mRNA down-regulation but is not required for the essential function of Nrd1. In contrast, the RNA-binding activity of Nrd1 appears to be required both for down-regulation and for its essential function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphatidylcholine-specific phospholipase C (PC-PLC) is a necessary intermediate in transducing apoptotic signals for tumor necrosis factor and Fas/Apo-1 ligands in nonneuronal cells. The data presented here show that PC-PLC also is required in oxidative glutamate-induced programmed cell death of both immature cortical neurons and a hippocampal nerve cell line, HT22. In oxidative glutamate toxicity, which is distinct from excitotoxicity, glutamate interferes with cystine uptake by blocking the cystine/glutamate antiporter, indirectly causing a depletion of intracellular glutathione. A PC-PLC inhibitor blocks oxidative glutamate toxicity, and exogenous PC-PLC potentiates glutamate toxicity. The inhibition of PC-PLC uncouples the cystine uptake from glutamate inhibition, allowing the maintenance of glutathione synthesis and cell viability. These data suggest that PC-PLC modulates neuronal cell death through a mechanism that is distinct from that involved in nonneuronal apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelial monocyte-activating polypeptide II (EMAP II) is a proinflammatory cytokine and a chemoattractant for monocytes. We show here that, in the mouse embryo, EMAP II mRNA was most abundant at sites of tissue remodeling where many apoptotic cells could be detected by terminal deoxynucleotidyltransferase-mediated dUTP end labeling. Removal of dead cells is known to require macrophages, and these were found to colocalize with areas of EMAP II mRNA expression and programmed cell death. In cultured cells, post-translational processing of pro-EMAP II protein to the mature released EMAP II form (23 kDa) occurred coincidentally with apoptosis. Cleavage of pro-EMAP II could be abrogated in cultured cells by using a peptide-based inhibitor, which competes with the ASTD cleavage site of pro-EMAP II. Our results suggest that the coordinate program of cell death includes activation of a caspase-like activity that initiates the processing of a cytokine responsible for macrophage attraction to the sites of apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric nuclease complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we generated DFF45 mutant mice. DNA fragmentation activity is completely abolished in cell extracts from DFF45 mutant tissues. In response to apoptotic stimuli, splenocytes, thymocytes, and granulocytes from DFF45 mutant mice are resistant to DNA fragmentation, and splenocytes and thymocytes are also resistant to chromatin condensation. Nevertheless, development of the immune system in the DFF45 mutant mice is normal. These results demonstrate that DFF45 is critical for the induction of DNA fragmentation and chromatin condensation in vivo, but is not required for normal immune system development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIDS is characterized by a progressive decrease of CD4+ helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56lck and Giα. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4+ but not in CD8+ T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programmed cell death regulates a number of biological phenomena, and the apoptotic signal must itself be tightly controlled to avoid inappropriate cell death. We established a genetic screen to search for molecules that inhibit the apoptotic signal from the Fas receptor. Here we report the isolation of a gene, LFG, that protects cells uniquely from Fas but not from the mechanistically related tumor necrosis factor α death signal. LFG is widely distributed, but remarkably is highly expressed in the hippocampus. LFG can bind to the Fas receptor, but does not regulate Fas expression or interfere with binding of an agonist antibody. Furthermore LFG does not inhibit binding of FADD to Fas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Persistent infection with hepatitis B virus (HBV) is a leading cause of human liver disease and is strongly associated with hepatocellular carcinoma, one of the most prevalent forms of human cancer. Apoptosis (programmed cell death) is an important mediator of chronic liver disease caused by HBV infection. It is demonstrated that the HBV HBx protein acutely sensitizes cells to apoptotic killing when expressed during viral replication in cultured cells and in transfected cells independently of other HBV genes. Cells that were resistant to apoptotic killing by high doses of tumor necrosis factor α (TNFα), a cytokine associated with liver damage during HBV infection, were made sensitive to very low doses of TNFα by HBx. HBx induced apoptosis by prolonged stimulation of N-Myc and the stress-mediated mitogen-activated-protein kinase kinase 1 (MEKK1) pathway but not by up-regulating TNF receptors. Cell killing was blocked by inhibiting HBx stimulation of N-Myc or mitogen-activated-protein kinase kinase 1 using dominant-interfering forms or by retargeting HBx from the cytoplasm to the nucleus, which prevents HBx activation of cytoplasmic signal transduction cascades. Treatment of cells with a mitogenic growth factor produced by many virus-induced tumors impaired induction of apoptosis by HBx and TNFα. These results indicate that HBx might be involved in HBV pathogenesis (liver disease) during virus infection and that enhanced apoptotic killing by HBx and TNFα might select for neoplastic hepatocytes that survive by synthesizing mitogenic growth factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenic Yersinia spp. carry a large common plasmid that encodes a number of essential virulence determinants. Included in these factors are the Yersinia-secreted proteins called Yops. We analyzed the consequences of wild-type and mutant strains of Yersinia pseudotuberculosis interactions with the macrophage cell line RAW264.7 and murine bone marrow-derived macrophages. Wild-type Y. pseudotuberculosis kills ≈70% of infected RAW264.7 macrophages and marrow-derived macrophages after an 8-h infection. We show that the cell death mediated by Y. pseudotuberculosis is apoptosis. Mutant Y. pseudotuberculosis that do not make any Yop proteins no longer cause host cell death. Attachment to host cells via invasin or YadA is necessary for the cell death phenotype. Several Yop mutant strains that fail to express one or more Yop proteins were engineered and then characterized for their ability to cause host cell death. A mutant with a polar insertion in YpkA Ser/Thr kinase that does not express YpkA or YopJ is no longer able to cause apoptosis. In contrast, a mutant no longer making YopE or YopH (a tyrosine phosphatase) induces apoptosis in macrophages similar to wild type. When yopJ is added in trans to the ypkAyopJ mutant, the ability of this strain to signal programmed cell death in macrophages is restored. Thus, YopJ is necessary for inducing apoptosis. The ability of Y. pseudotuberculosis to promote apoptosis of macrophages in cell culture suggests that this process is important for the establishment of infection in the host and for evasion of the host immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain ≈30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fas receptor is one of a number of important physiological inducers of programmed cell death (apoptosis). Current models for regulation of this process involve rapid conversion of sphingomyelin to ceramide by cellular sphingomyelinases. Induced changes in cellular levels of such sphingosine-based ceramides are normally extrapolated from measurements of sphingomyelinase activity or following their conversion to ceramide phosphate by treatment of cellular lipid extracts with bacterial diacylglycerol kinase (DAGK). To allow direct study of cellular sphingosine- and sphinganine-based ceramide levels, we developed a mass spectrometric technique capable of determining inducible changes in both overall ceramide levels and species distribution in cellular lipid preparations. Contrary to current models, we detected no changes in cellular ceramide levels up to 2 hr poststimulation of Jurkat T cells with an anti-Fas IgM, although this treatment did induce apoptosis. We also determined in the same system that, when utilizing the DAGK assay, increased phosphorylation of substrates that comigrated with ceramide standards was apparent but that this effect was due to an enhancement of DAGK activity rather than increases in levels of cellular ceramides as substrates per se. Thus, the first direct measurement of ceramides present in cells undergoing apoptosis indicates that, insofar as it can be measured, the induction of apoptosis does not involve the generation of sphingosine-based ceramides, contrary to many published accounts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The n-type K+ channel (n-K+, Kv1.3) in lymphocytes has been recently implicated in the regulation of Fas-induced programmed cell death. Here, we demonstrate that ceramide, a lipid metabolite synthesized upon Fas receptor ligation, inhibits n-K+ channel activity and induces a tyrosine phosphorylation of the Kv1.3 protein in Jurkat T lymphocytes. Tyrosine phosphorylation of the n-K+ channel correlated with an activation of the Src-like tyrosine kinase p56lck upon cellular treatment with the ceramide analog C6-ceramide. Because genetic deficiency of p56lck or inhibition of Src-like tyrosine kinases by herbimycin A prevented ceramide-mediated n-K+ channel inhibition and tyrosine phosphorylation, we propose a ceramide-initiated activation of p56lck resulting in tyrosine phosphorylation and inhibition of the n-K+ channel protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen intermediates (ROI) play a critical role in the defense of plants against invading pathogens. Produced during the “oxidative burst,” they are thought to activate programmed cell death (PCD) and induce antimicrobial defenses such as pathogenesis-related proteins. It was shown recently that during the interaction of plants with pathogens, the expression of ROI-detoxifying enzymes such as ascorbate peroxidase (APX) and catalase (CAT) is suppressed. It was suggested that this suppression, occurring upon pathogen recognition and coinciding with an enhanced rate of ROI production, plays a key role in elevating cellular ROI levels, thereby potentiating the induction of PCD and other defenses. To examine the relationship between the suppression of antioxidative mechanisms and the induction of PCD and other defenses during pathogen attack, we studied the interaction between transgenic antisense tobacco plants with reduced APX or CAT and a bacterial pathogen that triggers the hypersensitive response. Transgenic plants with reduced capability to detoxify ROI (i.e., antisense APX or CAT) were found to be hyperresponsive to pathogen attack. They activated PCD in response to low amounts of pathogens that did not trigger the activation of PCD in control plants. Our findings support the hypothesis that suppression of ROI-scavenging enzymes during the hypersensitive response plays an important role in enhancing pathogen-induced PCD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DAD1, the defender against apoptotic cell death, was initially identified as a negative regulator of programmed cell death in the BHK21-derived tsBN7 cell line. Of interest, the 12.5-kDa DAD1 protein is 40% identical in sequence to Ost2p, the 16-kDa subunit of the yeast oligosaccharyltransferase (OST). Although the latter observation suggests that DAD1 may be a mammalian OST subunit, biochemical evidence to support this hypothesis has not been reported. Previously, we showed that canine OST activity is associated with an oligomeric complex of ribophorin I, ribophorin II, and OST48. Here, we demonstrate that DAD1 is a tightly associated subunit of the OST both in the intact membrane and in the purified enzyme. Sedimentation velocity analyses of detergent-solubilized WI38 cells and canine rough microsomes show that DAD1 cosediments precisely with OST activity and with the ribophorins and OST48. Radioiodination of the purified OST reveals that DAD1 is present in roughly equimolar amounts relative to the other subunits. DAD1 can be crosslinked to OST48 in intact microsomes with dithiobis(succinimidylpropionate). Crosslinked ribophorin II–OST48 heterodimers, DAD1–ribophorin II–OST48 heterotrimers and DAD1–ribophorin I–ribophorin II–OST48 heterotetramers also were detected. The demonstration that DAD1 is a subunit of the OST suggests that induction of a cell death pathway upon loss of DAD1 in the tsBN7 cell line reflects the essential nature of N-linked glycosylation in eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell–substratum adhesion is an essential requirement for survival of human neonatal keratinocytes in vitro. Similarly, activation of the epidermal growth factor receptor (EGF-R) has recently been implicated not only in cell cycle progression but also in survival of normal keratinocytes. The mechanisms by which either cell–substratum adhesion or EGF-R activation protect keratinocytes from programmed cell death are poorly understood. Here we describe that blockade of the EGF-R and inhibition of substratum adhesion share a common downstream event, the down-regulation of the cell death protector Bcl-xL. Expression of Bcl-xL protein was down-regulated during forced suspension culture of keratinocytes, concurrent with large-scale apoptosis. Similarly, EGF-R blockade was accompanied by down-regulation of Bcl-xL steady-state mRNA and protein levels to an extent comparable to that observed in forced suspension culture. However, down-regulation of Bcl-xL expression by EGF-R blockade was not accompanied by apoptosis; in this case, a second signal, generated by passaging, was required to induce rapid and large-scale apoptosis. These findings are consistent with the conclusions that (i) Bcl-xL represents a shared molecular target for signaling through cell-substrate adhesion receptors and the EGF-R, and (ii) reduced levels of Bcl-xL expression through EGF-R blockade lower the tolerance of keratinocytes for cell death signals generated by cellular stress.